Source code for gammapy.visualization.utils

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging as log
import numpy as np
from scipy.interpolate import CubicSpline
from scipy.optimize import curve_fit
from scipy.stats import norm
from astropy.visualization import make_lupton_rgb
import matplotlib.axes as maxes
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

__all__ = [
    "add_colorbar",
    "plot_contour_line",
    "plot_map_rgb",
    "plot_theta_squared_table",
    "plot_distribution",
]


ARTIST_TO_LINE_PROPERTIES = {
    "color": "markeredgecolor",
    "edgecolor": "markeredgecolor",
    "ec": "markeredgecolor",
    "facecolor": "markerfacecolor",
    "fc": "markerfacecolor",
    "linewidth": "markeredgewidth",
    "lw": "markeredgewidth",
}


[docs] def add_colorbar(img, ax, axes_loc=None, **kwargs): """ Add colorbar to a given axis. Parameters ---------- img : `~matplotlib.image.AxesImage` The image to plot the colorbar for. ax : `~matplotlib.axes.Axes` Matplotlib axes. axes_loc : dict, optional Keyword arguments passed to `~mpl_toolkits.axes_grid1.axes_divider.AxesDivider.append_axes`. kwargs : dict, optional Keyword arguments passed to `~matplotlib.pyplot.colorbar`. Returns ------- cbar : `~matplotlib.pyplot.colorbar` The colorbar. Examples -------- .. testcode:: from gammapy.maps import Map from gammapy.visualization import add_colorbar import matplotlib.pyplot as plt map_ = Map.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz") axes_loc = {"position": "right", "size": "2%", "pad": "10%"} kwargs_colorbar = {'label':'Colorbar label'} # Example outside gammapy fig = plt.figure(figsize=(6, 3)) ax = fig.add_subplot(111) img = ax.imshow(map_.sum_over_axes().data[0,:,:]) add_colorbar(img, ax=ax, axes_loc=axes_loc, **kwargs_colorbar) # `add_colorbar` is available for the `plot` function here: fig = plt.figure(figsize=(6, 3)) ax = fig.add_subplot(111) map_.sum_over_axes().plot(ax=ax, add_cbar=True, axes_loc=axes_loc, kwargs_colorbar=kwargs_colorbar) # doctest: +SKIP """ kwargs.setdefault("use_gridspec", True) kwargs.setdefault("orientation", "vertical") axes_loc = axes_loc or {} axes_loc.setdefault("position", "right") axes_loc.setdefault("size", "5%") axes_loc.setdefault("pad", "2%") axes_loc.setdefault("axes_class", maxes.Axes) divider = make_axes_locatable(ax) cax = divider.append_axes(**axes_loc) cbar = plt.colorbar(img, cax=cax, **kwargs) return cbar
[docs] def plot_map_rgb(map_, ax=None, **kwargs): """ Plot RGB image on matplotlib WCS axes. This function is based on the `~astropy.visualization.make_lupton_rgb` function. The input map must contain 1 non-spatial axis with exactly 3 bins. If this is not the case, the map has to be resampled before using the `plot_map_rgb` function (e.g. as shown in the code example below). Parameters ---------- map_ : `~gammapy.maps.WcsNDMap` WCS map. The map must contain 1 non-spatial axis with exactly 3 bins. ax : `~astropy.visualization.wcsaxes.WCSAxes`, optional WCS axis object to plot on. **kwargs : dict Keyword arguments passed to `~astropy.visualization.make_lupton_rgb`. Returns ------- ax : `~astropy.visualization.wcsaxes.WCSAxes` WCS axis object. Examples -------- >>> from gammapy.visualization import plot_map_rgb >>> from gammapy.maps import Map, MapAxis >>> import astropy.units as u >>> map_ = Map.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz") >>> axis_rgb = MapAxis.from_energy_edges( ... [0.1, 0.2, 0.5, 10], unit=u.TeV, name="energy", interp="log" ... ) >>> map_ = map_.resample_axis(axis_rgb) >>> kwargs = {"stretch": 0.5, "Q": 1, "minimum": 0.15} >>> plot_map_rgb(map_.smooth(0.08*u.deg), **kwargs) #doctest: +SKIP """ geom = map_.geom if len(geom.axes) != 1 or geom.axes[0].nbin != 3: raise ValueError( "One non-spatial axis with exactly 3 bins is needed to plot an RGB image" ) data = [data_slice / np.nanmax(data_slice.flatten()) for data_slice in map_.data] data = make_lupton_rgb(*data, **kwargs) ax = map_._plot_default_axes(ax=ax) ax.imshow(data) if geom.is_allsky: ax = map_._plot_format_allsky(ax) else: ax = map_._plot_format(ax) # without this the axis limits are changed when calling scatter ax.autoscale(enable=False) return ax
[docs] def plot_contour_line(ax, x, y, **kwargs): """Plot smooth curve from contour points.""" xf = x yf = y # close contour if not (x[0] == x[-1] and y[0] == y[-1]): xf = np.append(x, x[0]) yf = np.append(y, y[0]) # curve parametrization must be strictly increasing # so we use the cumulative distance of each point from the first one dist = np.sqrt(np.diff(xf) ** 2.0 + np.diff(yf) ** 2.0) dist = [0] + list(dist) t = np.cumsum(dist) ts = np.linspace(0, t[-1], 50) # 1D cubic spline interpolation cs = CubicSpline(t, np.c_[xf, yf], bc_type="periodic") out = cs(ts) # plot if "marker" in kwargs.keys(): marker = kwargs.pop("marker") else: marker = "+" if "color" in kwargs.keys(): color = kwargs.pop("color") else: color = "b" ax.plot(out[:, 0], out[:, 1], "-", color=color, **kwargs) ax.plot(xf, yf, linestyle="", marker=marker, color=color)
[docs] def plot_theta_squared_table(table): """Plot the theta2 distribution of counts, excess and significance. Take the table containing the ON counts, the OFF counts, the acceptance, the off acceptance and the alpha (normalisation between ON and OFF) for each theta2 bin. Parameters ---------- table : `~astropy.table.Table` Required columns: theta2_min, theta2_max, counts, counts_off and alpha """ from gammapy.maps import MapAxis from gammapy.maps.axes import UNIT_STRING_FORMAT from gammapy.maps.utils import edges_from_lo_hi theta2_edges = edges_from_lo_hi( table["theta2_min"].quantity, table["theta2_max"].quantity ) theta2_axis = MapAxis.from_edges(theta2_edges, interp="lin", name="theta_squared") ax0 = plt.subplot(2, 1, 1) x = theta2_axis.center.value x_edges = theta2_axis.edges.value xerr = (x - x_edges[:-1], x_edges[1:] - x) ax0.errorbar( x, table["counts"], xerr=xerr, yerr=np.sqrt(table["counts"]), linestyle="None", label="Counts", ) ax0.errorbar( x, table["counts_off"], xerr=xerr, yerr=np.sqrt(table["counts_off"]), linestyle="None", label="Counts Off", ) ax0.errorbar( x, table["excess"], xerr=xerr, yerr=(table["excess_errn"], table["excess_errp"]), fmt="+", linestyle="None", label="Excess", ) ax0.set_ylabel("Counts") ax0.set_xticks([]) ax0.set_xlabel("") ax0.legend() ax1 = plt.subplot(2, 1, 2) ax1.errorbar(x, table["sqrt_ts"], xerr=xerr, linestyle="None") ax1.set_xlabel(f"Theta [{theta2_axis.unit.to_string(UNIT_STRING_FORMAT)}]") ax1.set_ylabel("Significance")
[docs] def plot_distribution( wcs_map, ax=None, ncols=3, func=None, kwargs_hist=None, kwargs_axes=None, kwargs_fit=None, ): """ Plot the 1D distribution of data inside a map as an histogram. If the dimension of the map is smaller than 2, a unique plot will be displayed. Otherwise, if the dimension is 3 or greater, a grid of plot will be displayed. Parameters ---------- wcs_map : `~gammapy.maps.WcsNDMap` A map that contains data to be plotted. ax : `~matplotlib.axes.Axes` or list of `~matplotlib.axes.Axes` Axis object to plot on. If a list of Axis is provided it has to be the same length as the length of _map.data. ncols : int Number of columns to plot if a "plot grid" was to be done. func : function object or str The function used to fit a map data histogram or "norm". Default is None. If None, no fit will be performed. If "norm" is given, `scipy.stats.norm.pdf` will be passed to `scipy.optimize.curve_fit`. kwargs_hist : dict Keyword arguments to pass to `matplotlib.pyplot.hist`. kwargs_axes : dict Keyword arguments to pass to `matplotlib.axes.Axes`. kwargs_fit : dict Keyword arguments to pass to `scipy.optimize.curve_fit` Returns ------- axes : `~numpy.ndarray` of `~matplotlib.pyplot.Axes` Array of Axes. result_list : list of dict List of dictionnary that contains the results of `scipy.optimize.curve_fit`. The number of elements in the list correspond to the dimension of the non-spatial axis of the map. The dictionnary contains: * `axis_edges` : the edges of the non-spatial axis bin used * `param` : the best-fit parameters of the input function `func` * `covar` : the covariance matrix for the fitted parameters `param` * `info_dict` : the `infodict` return of `scipy.optimize.curve_fit` Examples -------- >>> from gammapy.datasets import MapDataset >>> from gammapy.estimators import TSMapEstimator >>> from scipy.stats import norm >>> from gammapy.visualization import plot_distribution >>> dataset = MapDataset.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz") >>> tsmap_est = TSMapEstimator().run(dataset) >>> axs, res = plot_distribution(tsmap_est.sqrt_ts, func="norm", kwargs_hist={'bins': 75, 'range': (-10, 10), 'density': True}) >>> # Equivalently, one can do the following: >>> func = lambda x, mu, sig : norm.pdf(x, loc=mu, scale=sig) >>> axs, res = plot_distribution(tsmap_est.sqrt_ts, func=func, kwargs_hist={'bins': 75, 'range': (-10, 10), 'density': True}) """ from gammapy.maps import WcsNDMap # import here to avoid circular import if not isinstance(wcs_map, WcsNDMap): raise TypeError( f"map_ must be an instance of gammapy.maps.WcsNDMap, given {type(wcs_map)}" ) kwargs_hist = kwargs_hist or {} kwargs_axes = kwargs_axes or {} kwargs_fit = kwargs_fit or {} kwargs_hist.setdefault("density", True) kwargs_fit.setdefault("full_output", True) cutout, mask = wcs_map.cutout_and_mask_region() idx_x, idx_y = np.where(mask) data = cutout.data[..., idx_x, idx_y] if ax is None: n_plot = len(data) cols = min(ncols, n_plot) rows = 1 + (n_plot - 1) // cols width = 12 figsize = (width, width * rows / cols) fig, axes = plt.subplots( nrows=rows, ncols=cols, figsize=figsize, ) cells_in_grid = rows * cols else: axes = np.array([ax]) cells_in_grid = axes.size if not isinstance(axes, np.ndarray): axes = np.array([axes]) result_list = [] for idx in range(cells_in_grid): axe = axes.flat[idx] if idx > len(data) - 1: axe.set_visible(False) continue d = data[idx][np.isfinite(data[idx])] n, bins, _ = axe.hist(d, **kwargs_hist) if func is not None: kwargs_plot_fit = {"label": "Fit"} centers = 0.5 * (bins[1:] + bins[:-1]) if func == "norm": def func_to_fit(x, mu, sigma): return norm.pdf(x, mu, sigma) pars, cov, infodict, message, _ = curve_fit( func_to_fit, centers, n, **kwargs_fit ) mu, sig = pars[0], pars[1] err_mu, err_sig = np.sqrt(cov[0][0]), np.sqrt(cov[1][1]) label_norm = ( r"$\mu$ = {:.2f} ± {:.2E}\n$\sigma$ = {:.2f} ± {:.2E}".format( mu, err_mu, sig, err_sig ) ).replace(r"\n", "\n") kwargs_plot_fit["label"] = label_norm else: func_to_fit = func pars, cov, infodict, message, _ = curve_fit( func_to_fit, centers, n, **kwargs_fit ) axis_edges = ( wcs_map.geom.axes[-1].edges[idx], wcs_map.geom.axes[-1].edges[idx + 1], ) result_dict = { "axis_edges": axis_edges, "param": pars, "covar": cov, "info_dict": infodict, } result_list.append(result_dict) log.info(message) xmin, xmax = kwargs_hist.get("range", (np.min(d), np.max(d))) x = np.linspace(xmin, xmax, 1000) axe.plot(x, func_to_fit(x, *pars), lw=2, color="black", **kwargs_plot_fit) axe.set(**kwargs_axes) axe.legend() return axes, result_list