# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Model parameter classes."""
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import numpy as np
from ...extern import six
from astropy import units as u
from astropy.table import Table
from ..array import check_type
__all__ = ["Parameter", "Parameters"]
[docs]class Parameter(object):
"""
Class representing model parameters.
Note that the parameter value has been split into
a factor and scale like this::
value = factor x scale
Users should interact with the ``value``, ``quantity``
or ``min`` and ``max`` properties and consider the fact
that there is a ``factor``` and ``scale`` an implementation detail.
That was introduced for numerical stability in parameter and error
estimation methods, only in the Gammapy optimiser interface do we
interact with the ``factor``, ``factor_min`` and ``factor_max`` properties,
i.e. the optimiser "sees" the well-scaled problem.
Parameters
----------
name : str
Name
factor : float or `~astropy.units.Quantity`
Factor
scale : float, optional
Scale (sometimes used in fitting)
unit : `~astropy.units.Unit` or str, optional
Unit
min : float, optional
Minimum (sometimes used in fitting)
max : float, optional
Maximum (sometimes used in fitting)
frozen : bool, optional
Frozen? (used in fitting)
"""
__slots__ = ["_name", "_factor", "_scale", "_unit", "_min", "_max", "_frozen"]
def __init__(
self, name, factor, unit="", scale=1, min=np.nan, max=np.nan, frozen=False
):
self.name = name
self.scale = scale
if isinstance(factor, u.Quantity) or isinstance(factor, six.string_types):
self.quantity = factor
else:
self.factor = factor
self.unit = unit
self.min = min
self.max = max
self.frozen = frozen
@property
def name(self):
"""Name (str)."""
return self._name
@name.setter
def name(self, val):
self._name = check_type(val, "str")
@property
def factor(self):
"""Factor (float)."""
return self._factor
@factor.setter
def factor(self, val):
self._factor = float(val)
@property
def scale(self):
"""Scale (float)."""
return self._scale
@scale.setter
def scale(self, val):
self._scale = float(val)
@property
def unit(self):
"""Unit (`~astropy.units.Unit`)."""
return self._unit
@unit.setter
def unit(self, val):
self._unit = u.Unit(val)
@property
def min(self):
"""Minimum (float)."""
return self._min
@min.setter
def min(self, val):
self._min = float(val)
@property
def factor_min(self):
"""Factor min (float).
This ``factor_min = min / scale`` is for the optimizer interface.
"""
return self.min / self.scale
@property
def max(self):
"""Maximum (float)."""
return self._max
@max.setter
def max(self, val):
self._max = float(val)
@property
def factor_max(self):
"""Factor max (float).
This ``factor_max = max / scale`` is for the optimizer interface.
"""
return self.max / self.scale
@property
def frozen(self):
"""Frozen? (used in fitting) (bool)."""
return self._frozen
@frozen.setter
def frozen(self, val):
self._frozen = check_type(val, "bool")
@property
def value(self):
"""Value = factor x scale (float)."""
return self._factor * self._scale
@value.setter
def value(self, val):
self._factor = float(val) / self._scale
@property
def quantity(self):
"""Value times unit (`~astropy.units.Quantity`)."""
return self.value * self.unit
@quantity.setter
def quantity(self, val):
val = u.Quantity(val)
self.value = val.value
self.unit = val.unit
def __repr__(self):
return (
"Parameter(name={name!r}, value={value!r}, "
"factor={factor!r}, scale={scale!r}, unit={unit!r}, "
"min={min!r}, max={max!r}, frozen={frozen!r})"
).format(**self.to_dict())
[docs] def to_dict(self):
return dict(
name=self.name,
value=self.value,
factor=self.factor,
scale=self.scale,
unit=self.unit.to_string("fits"),
min=self.min,
max=self.max,
frozen=self.frozen,
)
[docs] def autoscale(self, method="scale10"):
"""Autoscale the parameters.
Set ``factor`` and ``scale`` according to ``method``
Available methods:
* ``scale10`` sets ``scale`` to power of 10,
so that abs(factor) is in the range 1 to 10
* ``factor1`` sets ``factor, scale = 1, value``
In both cases the sign of value is stored in ``factor``,
i.e. the ``scale`` is always positive.
Parameters
----------
method : {'factor1', 'scale10'}
Method to apply
"""
if method == "scale10":
value = self.value
if value != 0:
exponent = np.floor(np.log10(np.abs(value)))
scale = np.power(10.0, exponent)
self.factor = value / scale
self.scale = scale
elif method == "factor1":
self.factor, self.scale = 1, self.value
else:
raise ValueError("Invalid method: {}".format(method))
[docs]class Parameters(object):
"""List of `Parameter`.
Holds covariance matrix
Parameters
----------
parameters : list of `Parameter`
List of parameters
covariance : `~numpy.ndarray`, optional
Parameters covariance matrix.
Order of values as specified by `parameters`.
apply_autoscale : bool, optional
Flag for optimizers, if True parameters are autoscaled before the fit,
see `~gammapy.utils.modeling.Parameter.autoscale`
"""
def __init__(self, parameters, covariance=None, apply_autoscale=True):
self._parameters = parameters
self.covariance = covariance
self.apply_autoscale = apply_autoscale
def _init_covariance(self):
if self.covariance is None:
shape = (len(self.parameters), len(self.parameters))
self.covariance = np.zeros(shape)
[docs] def copy(self):
"""A deep copy"""
return copy.deepcopy(self)
@property
def parameters(self):
"""List of `Parameter`."""
return self._parameters
# TODO: replace this with a better API to update parameters
@parameters.setter
def parameters(self, vals):
self._parameters = vals
@property
def names(self):
"""List of parameter names"""
return [par.name for par in self.parameters]
def __str__(self):
ss = self.__class__.__name__
for par in self.parameters:
ss += "\n{}".format(par)
ss += "\n\ncovariance: \n{}".format(self.covariance)
return ss
def _get_idx(self, val):
"""Get position index for a given parameter.
The input can be a parameter object, parameter name (str)
or if a parameter index (int) is passed in, it is simply returned.
"""
if isinstance(val, six.integer_types):
return val
elif isinstance(val, Parameter):
for idx, par in enumerate(self.parameters):
if val is par:
return idx
raise IndexError("No parameter: {!r}".format(val))
elif isinstance(val, six.string_types):
for idx, par in enumerate(self.parameters):
if val == par.name:
return idx
raise IndexError("No parameter: {!r}".format(val))
else:
raise TypeError("Invalid type: {!r}".format(type(val)))
def __getitem__(self, name):
"""Access parameter by name or index"""
idx = self._get_idx(name)
return self.parameters[idx]
[docs] def to_dict(self):
retval = dict(parameters=[], covariance=None)
for par in self.parameters:
retval["parameters"].append(par.to_dict())
if self.covariance is not None:
retval["covariance"] = self.covariance.tolist()
return retval
[docs] def to_table(self):
"""Convert parameter attributes to `~astropy.table.Table`."""
t = Table()
t["name"] = [p.name for p in self.parameters]
t["value"] = [p.value for p in self.parameters]
if self.covariance is None:
t["error"] = np.nan
else:
t["error"] = [self.error(idx) for idx in range(len(self.parameters))]
t["unit"] = [p.unit.to_string("fits") for p in self.parameters]
t["min"] = [p.min for p in self.parameters]
t["max"] = [p.max for p in self.parameters]
t["frozen"] = [p.frozen for p in self.parameters]
for name in ["value", "error", "min", "max"]:
t[name].format = ".3e"
return t
[docs] @classmethod
def from_dict(cls, val):
pars = []
for par in val["parameters"]:
pars.append(
Parameter(
name=par["name"],
factor=float(par["value"]),
unit=par["unit"],
min=float(par["min"]),
max=float(par["max"]),
frozen=par["frozen"],
)
)
try:
covariance = np.array(val["covariance"])
except KeyError:
covariance = None
return cls(parameters=pars, covariance=covariance)
[docs] def covariance_to_table(self):
"""Convert covariance matrix to `~astropy.table.Table`."""
if self.covariance is None:
raise ValueError("No covariance available")
table = Table()
table["name"] = self.names
for idx, par in enumerate(self.parameters):
vals = self.covariance[idx]
table[par.name] = vals
table[par.name].format = ".3e"
return table
@property
def _ufloats(self):
"""
Return dict of ufloats with covariance
"""
from uncertainties import correlated_values
values = [_.value for _ in self.parameters]
try:
# convert existing parameters to ufloats
uarray = correlated_values(values, self.covariance)
except np.linalg.LinAlgError:
raise ValueError("Covariance matrix not set.")
upars = {}
for par, upar in zip(self.parameters, uarray):
upars[par.name] = upar
return upars
# TODO: deprecate or remove this?
[docs] def set_parameter_errors(self, errors):
"""
Set uncorrelated parameters errors.
Parameters
----------
errors : dict of `~astropy.units.Quantity`
Dict of parameter errors.
"""
diag = []
for par in self.parameters:
error = errors.get(par.name, 0)
error = u.Quantity(error, par.unit).value
diag.append(error)
self.covariance = np.diag(np.power(diag, 2))
# TODO: this is a temporary solution until we have a better way
# to handle covariance matrices via a class
[docs] def error(self, parname):
"""Get parameter error.
Parameters
----------
parname : str, int
Parameter name or index
"""
if self.covariance is None:
raise ValueError("Covariance matrix not set.")
idx = self._get_idx(parname)
return np.sqrt(self.covariance[idx, idx])
# TODO: this is a temporary solution until we have a better way
# to handle covariance matrices via a class
[docs] def set_error(self, parname, err):
"""Set parameter error.
Parameters
----------
parname : str, int
Parameter name or index
err : float or Quantity
Parameter error
"""
self._init_covariance()
idx = self._get_idx(parname)
err = u.Quantity(err, self[idx].unit).value
self.covariance[idx, idx] = err ** 2
@property
def correlation(self):
r"""Correlation matrix (`numpy.ndarray`).
Correlation :math:`C` is related to covariance :math:`\Sigma` via:
.. math::
C_{ij} = \frac{ \Sigma_{ij} }{ \sqrt{\Sigma_{ii} \Sigma_{jj}} }
"""
err = np.sqrt(np.diag(self.covariance))
return self.covariance / np.outer(err, err)
[docs] def set_parameter_factors(self, factors):
"""Set factor of all parameters.
Used in the optimizer interface.
"""
for factor, parameter in zip(factors, self.parameters):
parameter.factor = factor
@property
def _scale_matrix(self):
scales = [par.scale for par in self.parameters]
return np.outer(scales, scales)
[docs] def set_covariance_factors(self, matrix):
"""Set covariance from factor covariance matrix.
Used in the optimizer interface.
"""
self.covariance = self._scale_matrix * matrix
[docs] def autoscale(self, method="scale10"):
"""Autoscale all parameters.
See :func:`~gammapy.utils.modelling.Parameter.autoscale`
Parameters
----------
method : {'factor1', 'scale10'}
Method to apply
"""
for par in self.parameters:
par.autoscale(method)
@property
def restore_values(self):
"""Context manager to restore values.
A copy of the values is made on enter,
and those values are restored on exit.
Examples
--------
::
from gammapy.spectrum.models import PowerLaw
pwl = PowerLaw(index=2)
with pwl.parameters.restore_values:
pwl.parameters["index"].value = 3
print(pwl.parameters["index"].value)
"""
return restore_parameters_values(self)
class restore_parameters_values:
def __init__(self, parameters):
self.parameters = parameters
self.values = [_.value for _ in parameters]
def __enter__(self):
pass
def __exit__(self, type, value, traceback):
for value, par in zip(self.values, self.parameters):
par.value = value