MapFit¶
-
class
gammapy.cube.MapFit(model, counts, exposure, background=None, mask=None, psf=None, edisp=None, background_model=None)[source]¶ Bases:
gammapy.utils.fitting.FitPerform sky model likelihood fit on maps.
This is the first go at such a class. It’s geared to the
SpectrumFitclass which does the 1D spectrum fit.Parameters: - model :
SkyModel Fit model
- counts :
WcsNDMap Counts cube
- exposure :
WcsNDMap Exposure cube
- background :
WcsNDMap Background Cube
- mask :
WcsNDMap Mask to apply for the fit. All the pixels that contain 1 or True are included in the fit, all others are ignored.
- psf :
PSFKernel PSF kernel
- edisp :
EnergyDispersion Energy dispersion
- background_model: `~gammapy.cube.models.BackgroundModel`
Background model to use for the fit. Can be specified instead of
backgroundto fit the background as well.
Attributes Summary
statLikelihood per bin given the current model parameters Methods Summary
confidence(parameter[, backend, sigma])Estimate confidence interval. covariance([backend])Estimate the covariance matrix. likelihood_contour()Compute likelihood contour. likelihood_profile(parameter[, values, …])Compute likelihood profile. minos_contour(x, y[, numpoints, sigma])Compute MINOS contour. minos_profile()Compute MINOS profile. optimize([backend])Run the optimization. run([optimize_opts, covariance_opts])Run all fitting steps. total_stat(parameters)Total likelihood given the current model parameters Attributes Documentation
-
stat¶ Likelihood per bin given the current model parameters
Methods Documentation
-
confidence(parameter, backend='minuit', sigma=1, **kwargs)¶ Estimate confidence interval.
Extra
kwargsare passed to the backend. E.g.iminuit.Minuit.minossupports amaxcalloption.Parameters: - backend : str
Which backend to use (see
gammapy.utils.fitting.registry)- parameter :
Parameter Parameter of interest
- sigma : float
Number of standard deviations for the confidence level
Returns: - result : dict
Dictionary with keys “errp”, ‘errn”, “success” and “nfev”.
-
covariance(backend='minuit')¶ Estimate the covariance matrix.
Assumes that the model parameters are already optimised.
Parameters: - backend : str
Which backend to use (see
gammapy.utils.fitting.registry)
Returns: - result :
CovarianceResult Results
-
likelihood_contour()¶ Compute likelihood contour.
The method used is to vary two parameters, keeping all others fixed. So this is taking a “slice” or “scan” of the likelihood.
See also:
Fit.minos_contourParameters: - TODO
Returns: - TODO
-
likelihood_profile(parameter, values=None, bounds=2, nvalues=11)¶ Compute likelihood profile.
The method used is to vary one parameter, keeping all others fixed. So this is taking a “slice” or “scan” of the likelihood.
See also:
Fit.minos_profile.Parameters: - parameter :
Parameter Parameter of interest
- values :
Quantity(optional) Parameter values to evaluate the likelihood for.
- bounds : int or tuple of float
When an
intis passed the bounds are computed frombounds * sigmafrom the best fit value of the parameter, wheresigmacorresponds to the one sigma error on the parameter. If a tuple of floats is given those are taken as the min and max values andnvaluesare linearly spaced between those.- nvalues : int
Number of parameter grid points to use.
Returns: - results : dict
Dictionary with keys “values” and “likelihood”.
- parameter :
-
minos_contour(x, y, numpoints=10, sigma=1.0)¶ Compute MINOS contour.
Calls
iminuit.Minuit.mncontour.This is a contouring algorithm for a 2D function which is not simply the likelihood function. That 2D function is given at each point
(par_1, par_2)by re-optimising all other free parameters, and taking the likelihood at that point.Very compute-intensive and slow.
Parameters: - x, y :
Parameter Parameters of interest
- numpoints : int
Number of contour points
- sigma : float
Number of standard deviations for the confidence level
Returns: - result : dict
Dictionary with keys “x”, “y” (Numpy arrays with contour points) and a boolean flag “success”. The result objects from
mncontourare in the additional keys “x_info” and “y_info”.
- x, y :
-
minos_profile()¶ Compute MINOS profile.
The method used is to vary one parameter, then re-optimise all other free parameters and to take the likelihood at that point.
See also:
Fit.likelihood_profileCalls
iminuit.Minuit.mnprofile
-
optimize(backend='minuit', **kwargs)¶ Run the optimization.
Parameters: - backend : str
Which backend to use (see
gammapy.utils.fitting.registry)- **kwargs : dict
Keyword arguments passed to the optimizer. For the
"minuit"backend see https://iminuit.readthedocs.io/en/latest/api.html#iminuit.Minuit for a detailed description of the available options. For the"sherpa"backend you can from the optionsmethod = {"simplex", "levmar", "moncar", "gridsearch"}Those methods are described and compared in detail on http://cxc.cfa.harvard.edu/sherpa/methods/index.html. The available options of the optimization methods are described on the following pages in detail:
Returns: - fit_result :
FitResult Results
-
run(optimize_opts=None, covariance_opts=None)¶ Run all fitting steps.
Parameters: - optimize_opts : dict
Options passed to
Fit.optimize.- covariance_opts : dict
Options passed to
Fit.covariance.
Returns: - fit_result :
FitResult Results
- model :