This is a fixed-text formatted version of a Jupyter notebook

Spectrum analysis with Gammapy (run pipeline)

In this tutorial we will learn how to perform a 1d spectral analysis.

We will use a “pipeline” or “workflow” class to run a standard analysis. If you’re interested in implementation detail of the analysis in order to create a custom analysis class, you should read (spectrum_analysis.ipynb) that executes the analysis using lower-level classes and methods in Gammapy.

In this tutorial we will use the folling Gammapy classes:

We use 4 Crab observations from H.E.S.S. for testing.

Setup

As usual, we’ll start with some setup for the notebook, and import the functionality we need.

[1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

import astropy.units as u
from astropy.coordinates import SkyCoord
from regions import CircleSkyRegion

from gammapy.utils.energy import EnergyBounds
from gammapy.data import DataStore
from gammapy.scripts import SpectrumAnalysisIACT
from gammapy.catalog import SourceCatalogGammaCat
from gammapy.maps import Map
from gammapy.spectrum.models import LogParabola
from gammapy.spectrum import CrabSpectrum

Select data

First, we select and load some H.E.S.S. data (simulated events for now). In real life you would do something fancy here, or just use the list of observations someone send you (and hope they have done something fancy before). We’ll just use the standard gammapy 4 crab runs.

[2]:
data_store = DataStore.from_dir("$GAMMAPY_DATA/hess-dl3-dr1/")
mask = data_store.obs_table["TARGET_NAME"] == "Crab"
obs_ids = data_store.obs_table["OBS_ID"][mask].data
observations = data_store.get_observations(obs_ids)
print(obs_ids)
[23523 23526 23559 23592]

Configure the analysis

Now we’ll define the input for the spectrum analysis. It will be done the python way, i.e. by creating a config dict containing python objects. We plan to add also the convenience to configure the analysis using a plain text config file.

[3]:
crab_pos = SkyCoord.from_name("crab")
on_region = CircleSkyRegion(crab_pos, 0.15 * u.deg)

model = LogParabola(
    alpha=2.3,
    beta=0.01,
    amplitude=1e-11 * u.Unit("cm-2 s-1 TeV-1"),
    reference=1 * u.TeV,
)

flux_point_binning = EnergyBounds.equal_log_spacing(0.7, 30, 5, u.TeV)
[4]:
exclusion_mask = Map.create(skydir=crab_pos, width=(10, 10), binsz=0.02)

gammacat = SourceCatalogGammaCat("$GAMMAPY_DATA/gamma-cat/gammacat.fits.gz")

regions = []
for source in gammacat:
    if not exclusion_mask.geom.contains(source.position):
        continue
    region = CircleSkyRegion(source.position, 0.15 * u.deg)
    regions.append(region)

exclusion_mask.data = exclusion_mask.geom.region_mask(regions, inside=False)
exclusion_mask.plot();
../_images/notebooks_spectrum_pipe_8_0.png
[5]:
config = dict(
    outdir=".",
    background=dict(
        on_region=on_region,
        exclusion_mask=exclusion_mask,
        min_distance=0.1 * u.rad,
    ),
    extraction=dict(containment_correction=False),
    fit=dict(
        model=model,
        stat="wstat",
        forward_folded=True,
        fit_range=flux_point_binning[[0, -1]],
    ),
    fp_binning=flux_point_binning,
)

Run the analysis

TODO: Clean up the log (partly done, get rid of remaining useless warnings)

[6]:
analysis = SpectrumAnalysisIACT(observations=observations, config=config)
analysis.run(optimize_opts={"print_level": 1})

FCN = 108.84841996225438 TOTAL NCALL = 118 NCALLS = 118
EDM = 2.5716206464251214e-06 GOAL EDM = 1e-05 UP = 1.0
Valid Valid Param Accurate Covar PosDef Made PosDef
True True True True False
Hesse Fail HasCov Above EDM Reach calllim
False True False False
+ Name Value Hesse Error Minos Error- Minos Error+ Limit- Limit+ Fixed?
0 par_000_amplitude 3.32906 0.221997 No
1 par_001_alpha 2.32355 0.19305 No
2 par_002_beta 18.6443 9.95249 No

Results

Let’s look at the results, and also compare with a previously published Crab nebula spectrum for reference.

[7]:
print(analysis.fit.result[0])

Fit result info
---------------
Model: LogParabola

Parameters:

           name     value     error        unit      min max frozen
        --------- --------- --------- -------------- --- --- ------
        amplitude 3.329e-11 2.220e-12 cm-2 s-1 TeV-1 nan nan  False
        reference 1.000e+00 0.000e+00            TeV nan nan   True
            alpha 2.324e+00 1.930e-01                nan nan  False
             beta 1.864e-01 9.952e-02                nan nan  False

Covariance:

           name   amplitude  reference   alpha       beta
        --------- ---------- --------- ---------- ----------
        amplitude  4.928e-24 0.000e+00  2.247e-13 -6.318e-14
        reference  0.000e+00 0.000e+00  0.000e+00  0.000e+00
            alpha  2.247e-13 0.000e+00  3.727e-02 -1.744e-02
             beta -6.318e-14 0.000e+00 -1.744e-02  9.905e-03

Statistic: 39.256 (wstat)
Fit Range: [ 0.87992254 27.82559402] TeV

[8]:
opts = {
    "energy_range": analysis.fit.fit_range,
    "energy_power": 2,
    "flux_unit": "erg-1 cm-2 s-1",
}
axes = analysis.spectrum_result.plot(**opts)
CrabSpectrum().model.plot(ax=axes[0], **opts)
[8]:
<matplotlib.axes._subplots.AxesSubplot at 0x1c1691ff60>
../_images/notebooks_spectrum_pipe_14_1.png

Exercises

Rerun the analysis, changing some aspects of the analysis as you like:

  • only use one or two observations
  • a different spectral model
  • different config options for the spectral analysis
  • different energy binning for the spectral point computation

Observe how the measured spectrum changes.

[9]: