SpectrumDatasetOnOff

class gammapy.datasets.SpectrumDatasetOnOff(models=None, counts=None, counts_off=None, exposure=None, edisp=None, mask_safe=None, mask_fit=None, acceptance=None, acceptance_off=None, name=None, gti=None, meta_table=None)[source]

Bases: gammapy.datasets.SpectrumDataset

Spectrum dataset for on-off likelihood fitting.

The on-off spectrum dataset bundles reduced counts data, off counts data, with a spectral model, relative background efficiency and instrument response functions to compute the fit-statistic given the current model and data.

Parameters
modelsModels

Fit model

countsRegionNDMap

ON Counts spectrum

counts_offRegionNDMap

OFF Counts spectrum

exposureRegionNDMap

Exposure

edispEDispKernelMap

Energy dispersion kernel

mask_safeRegionNDMap

Mask defining the safe data range.

mask_fitRegionNDMap

Mask to apply to the likelihood for fitting.

acceptanceRegionNDMap or float

Relative background efficiency in the on region.

acceptance_offRegionNDMap or float

Relative background efficiency in the off region.

namestr

Name of the dataset.

gtiGTI

GTI of the observation or union of GTI if it is a stacked observation

meta_tableTable

Table listing informations on observations used to create the dataset. One line per observation for stacked datasets.

Attributes Summary

alpha

Exposure ratio between signal and background regions

background

alpha * noff

background_model

counts

A lazy FITS data descriptor.

data_shape

Shape of the counts or background data (tuple)

edisp

A lazy FITS data descriptor.

energy_range

Energy range defined by the safe mask

evaluators

Model evaluators

excess

Excess

exposure

A lazy FITS data descriptor.

geoms

Map geometries

mask

Combined fit and safe mask

mask_fit

A lazy FITS data descriptor.

mask_safe

A lazy FITS data descriptor.

mask_safe_edisp

Mask safe for edisp maps

mask_safe_image

Reduced mask safe

mask_safe_psf

Mask safe for psf maps

models

Models (Models).

name

psf

A lazy FITS data descriptor.

stat_type

tag

Methods Summary

apply_mask_safe()

Apply mask safe to the dataset

copy([name])

A deep copy.

create(e_reco[, e_true, region, …])

Create empty SpectrumDatasetOnOff.

cutout(*args, **kwargs)

Returns self

downsample(factor[, axis_name, name])

Downsample map dataset.

fake(npred_background[, random_state])

Simulate fake counts for the current model and reduced irfs.

from_dict(data, **kwargs)

Create flux point dataset from dict.

from_geoms(geom, geom_exposure, geom_psf, …)

Create a MapDataset object with zero filled maps according to the specified geometries

from_hdulist()

Create map dataset from list of HDUs.

from_ogip_files(filename)

Read SpectrumDatasetOnOff from OGIP files.

from_spectrum_dataset(dataset, acceptance, …)

Create spectrum dataseton off from another dataset.

info_dict([in_safe_data_range])

Info dict with summary statistics, summed over energy

npred()

Predicted source and background counts

npred_background()

Background counts estimated from the marginalized likelihood estimate.

npred_off()

Predicted counts in the off region

npred_signal([model])

“Model predicted signal counts.

pad(*args, **kwargs)

Returns self

peek([fig])

Quick-look summary plots.

plot_counts([ax, kwargs_counts, …])

Plot counts and background.

plot_excess([ax, kwargs_excess, …])

Plot excess and predicted signal.

plot_fit([ax_spectrum, ax_residuals, …])

Plot spectrum and residuals in two panels.

plot_residuals([ax, method])

Plot spectrum residuals.

plot_residuals_spatial([ax, method, …])

Plot spatial residuals.

plot_residuals_spectral([ax, method, region])

Plot spectral residuals.

read(filename)

Read from file

resample_energy_axis(energy_axis[, name])

Resample SpectrumDatasetOnOff over new reconstructed energy axis.

reset_data_cache()

Reset data cache to free memory space

residuals([method])

Compute the spectral residuals.

slice_by_energy(energy_min, energy_max[, name])

Select and slice datasets in energy range

slice_by_idx(slices[, name])

Slice sub dataset.

stack(other)

Stack this dataset with another one.

stat_array()

Likelihood per bin given the current model parameters

stat_sum()

Total statistic given the current model parameters.

to_dict(filename, *args, **kwargs)

Convert to dict for YAML serialization.

to_hdulist()

Convert map dataset to list of HDUs.

to_image([name])

Create images by summing over the reconstructed energy axis.

to_ogip_files([outdir, use_sherpa, overwrite])

Write OGIP files.

to_spectrum_dataset([name])

Convert a SpectrumDatasetOnOff to a SpectrumDataset The background model template is taken as alpha*counts_off

write(filename, overwrite)

Write spectrum dataset on off to file.

Attributes Documentation

alpha

Exposure ratio between signal and background regions

background

alpha * noff

background_model
counts

A lazy FITS data descriptor.

Parameters
cachebool

Whether to cache the data.

data_shape

Shape of the counts or background data (tuple)

edisp

A lazy FITS data descriptor.

Parameters
cachebool

Whether to cache the data.

energy_range

Energy range defined by the safe mask

evaluators

Model evaluators

excess

Excess

exposure

A lazy FITS data descriptor.

Parameters
cachebool

Whether to cache the data.

geoms

Map geometries

Returns
geomsdict

Dict of map geometries involved in the dataset.

mask

Combined fit and safe mask

mask_fit

A lazy FITS data descriptor.

Parameters
cachebool

Whether to cache the data.

mask_safe

A lazy FITS data descriptor.

Parameters
cachebool

Whether to cache the data.

mask_safe_edisp

Mask safe for edisp maps

mask_safe_image

Reduced mask safe

mask_safe_psf

Mask safe for psf maps

models

Models (Models).

name
psf

A lazy FITS data descriptor.

Parameters
cachebool

Whether to cache the data.

stat_type = 'wstat'
tag = 'SpectrumDatasetOnOff'

Methods Documentation

apply_mask_safe()

Apply mask safe to the dataset

copy(name=None)

A deep copy.

classmethod create(e_reco, e_true=None, region=None, reference_time='2000-01-01', name=None, meta_table=None)[source]

Create empty SpectrumDatasetOnOff.

Empty containers are created with the correct geometry. counts, counts_off and aeff are zero and edisp is diagonal.

The safe_mask is set to False in every bin.

Parameters
e_recoMapAxis

counts energy axis. Its name must be “energy”.

e_trueMapAxis

effective area table energy axis. Its name must be “energy-true”. If not set use reco energy values. Default : None

regionSkyRegion

Region to define the dataset for.

reference_timeTime

reference time of the dataset, Default is “2000-01-01”

meta_tableTable

Table listing informations on observations used to create the dataset. One line per observation for stacked datasets.

cutout(*args, **kwargs)

Returns self

downsample(factor, axis_name=None, name=None)

Downsample map dataset.

The PSFMap and EDispKernelMap are not downsampled, except if a corresponding axis is given.

Parameters
factorint

Downsampling factor.

axis_namestr

Which non-spatial axis to downsample. By default only spatial axes are downsampled.

namestr

Name of the downsampled dataset.

Returns
datasetMapDataset or SpectrumDataset

Downsampled map dataset.

fake(npred_background, random_state='random-seed')[source]

Simulate fake counts for the current model and reduced irfs.

This method overwrites the counts and off counts defined on the dataset object.

Parameters
npred_backgroundRegionNDMap

Predicted background to be used in the on region.

random_state{int, ‘random-seed’, ‘global-rng’, RandomState}

Defines random number generator initialisation. Passed to get_random_state.

classmethod from_dict(data, **kwargs)[source]

Create flux point dataset from dict.

Parameters
datadict

Dict containing data to create dataset from.

Returns
datasetSpectrumDatasetOnOff

Spectrum dataset on off.

classmethod from_geoms(geom, geom_exposure, geom_psf, geom_edisp, reference_time='2000-01-01', name=None, **kwargs)

Create a MapDataset object with zero filled maps according to the specified geometries

Parameters
geomGeom

geometry for the counts and background maps

geom_exposureGeom

geometry for the exposure map

geom_psfGeom

geometry for the psf map

geom_edispGeom

geometry for the energy dispersion kernel map. If geom_edisp has a migra axis, this wil create an EDispMap instead.

reference_timeTime

the reference time to use in GTI definition

namestr

Name of the returned dataset.

Returns
datasetMapDataset or SpectrumDataset

A dataset containing zero filled maps

from_hdulist()

Create map dataset from list of HDUs.

Parameters
hdulistHDUList

List of HDUs.

namestr

Name of the new dataset.

Returns
datasetMapDataset

Map dataset.

classmethod from_ogip_files(filename)[source]

Read SpectrumDatasetOnOff from OGIP files.

BKG file, ARF, and RMF must be set in the PHA header and be present in the same folder.

The naming scheme is fixed to the following scheme:

  • PHA file is named pha_obs{name}.fits

  • BKG file is named bkg_obs{name}.fits

  • ARF file is named arf_obs{name}.fits

  • RMF file is named rmf_obs{name}.fits with {name} the dataset name.

Parameters
filenamestr

OGIP PHA file to read

classmethod from_spectrum_dataset(dataset, acceptance, acceptance_off, counts_off=None)[source]

Create spectrum dataseton off from another dataset.

Parameters
datasetSpectrumDataset

Spectrum dataset defining counts, edisp, exposure etc.

acceptancearray or float

Relative background efficiency in the on region.

acceptance_offarray or float

Relative background efficiency in the off region.

counts_offRegionNDMap

Off counts spectrum . If the dataset provides a background model, and no off counts are defined. The off counts are deferred from counts_off / alpha.

Returns
datasetSpectrumDatasetOnOff

Spectrum dataset on off.

info_dict(in_safe_data_range=True)[source]

Info dict with summary statistics, summed over energy

Parameters
in_safe_data_rangebool

Whether to sum only in the safe energy range

Returns
info_dictdict

Dictionary with summary info.

npred()

Predicted source and background counts

Returns
npredMap

Total predicted counts

npred_background()[source]

Background counts estimated from the marginalized likelihood estimate. See WStat : Poisson data with background measurement

npred_off()[source]

Predicted counts in the off region

Returns
npred_offMap

Predicted off counts

npred_signal(model=None)

“Model predicted signal counts.

If a model is passed, predicted counts from that component is returned. Else, the total signal counts are returned.

Parameters
model: `~gammapy.modeling.models.SkyModel`, optional

Sky model to compute the npred for. If none, the sum of all components (minus the background model) is returned

Returns
npred_sig: gammapy.maps.Map

Map of the predicted signal counts

pad(*args, **kwargs)

Returns self

peek(fig=None)

Quick-look summary plots.

Parameters
figFigure

Figure to add AxesSubplot on.

Returns
ax1, ax2, ax3AxesSubplot

Counts, effective area and energy dispersion subplots.

plot_counts(ax=None, kwargs_counts=None, kwargs_background=None, **kwargs)

Plot counts and background.

Parameters
axAxes

Axes to plot on.

kwargs_counts: dict

Keyword arguments passed to hist for the counts.

kwargs_background: dict

Keyword arguments passed to hist for the background.

**kwargs: dict

Keyword arguments passed to both hist.

Returns
axAxes

Axes object.

plot_excess(ax=None, kwargs_excess=None, kwargs_npred_signal=None, **kwargs)

Plot excess and predicted signal.

Parameters
axAxes

Axes to plot on.

kwargs_excess: dict

Keyword arguments passed to errorbar for the excess.

kwargs_npred_signaldict

Keyword arguments passed to hist for the predicted signal.

**kwargs: dict

Keyword arguments passed to both plot methods.

Returns
axAxes

Axes object.

plot_fit(ax_spectrum=None, ax_residuals=None, kwargs_spectrum=None, kwargs_residuals=None)

Plot spectrum and residuals in two panels.

Calls plot_excess and plot_residuals.

Parameters
ax_spectrumAxes

Axes to plot spectrum on.

ax_residualsAxes

Axes to plot residuals on.

kwargs_spectrumdict

Keyword arguments passed to plot_excess.

kwargs_residualsdict

Keyword arguments passed to plot_residuals.

Returns
ax_spectrum, ax_residualsAxes

Spectrum and residuals plots.

plot_residuals(ax=None, method='diff', **kwargs)

Plot spectrum residuals.

Parameters
axAxes

Axes to plot on.

method{“diff”, “diff/model”, “diff/sqrt(model)”}

Normalization used to compute the residuals, see SpectrumDataset.residuals.

**kwargsdict

Keyword arguments passed to errorbar.

Returns
axAxes

Axes object.

plot_residuals_spatial(ax=None, method='diff', smooth_kernel='gauss', smooth_radius='0.1 deg', **kwargs)

Plot spatial residuals.

The normalization used for the residuals computation can be controlled using the method parameter.

Parameters
axWCSAxes

Axes to plot on.

method{“diff”, “diff/model”, “diff/sqrt(model)”}

Normalization used to compute the residuals, see MapDataset.residuals.

smooth_kernel{“gauss”, “box”}

Kernel shape.

smooth_radius: `~astropy.units.Quantity`, str or float

Smoothing width given as quantity or float. If a float is given, it is interpreted as smoothing width in pixels.

**kwargsdict

Keyword arguments passed to imshow.

Returns
axWCSAxes

WCSAxes object.

plot_residuals_spectral(ax=None, method='diff', region=None, **kwargs)

Plot spectral residuals.

The residuals are extracted from the provided region, and the normalization used for its computation can be controlled using the method parameter.

Parameters
axAxes

Axes to plot on.

method{“diff”, “diff/model”, “diff/sqrt(model)”}

Normalization used to compute the residuals, see SpectrumDataset.residuals.

region: `~regions.SkyRegion` (required)

Target sky region.

**kwargsdict

Keyword arguments passed to errorbar.

Returns
axAxes

Axes object.

classmethod read(filename)[source]

Read from file

For now, filename is assumed to the name of a PHA file where BKG file, ARF, and RMF names must be set in the PHA header and be present in the same folder

Parameters
filenamestr

OGIP PHA file to read

resample_energy_axis(energy_axis, name=None)[source]

Resample SpectrumDatasetOnOff over new reconstructed energy axis.

Counts are summed taking into account safe mask.

Parameters
energy_axisMapAxis

New reconstructed energy axis

name: str

Name of the new dataset.

Returns
dataset: SpectrumDataset

Resampled spectrum dataset .

reset_data_cache()

Reset data cache to free memory space

residuals(method='diff')

Compute the spectral residuals.

Parameters
method{“diff”, “diff/model”, “diff/sqrt(model)”}
Method used to compute the residuals. Available options are:
  • diff (default): data - model

  • diff/model: (data - model) / model

  • diff/sqrt(model): (data - model) / sqrt(model)

Returns
residualsRegionNDMap

Residual spectrum

slice_by_energy(energy_min, energy_max, name=None)

Select and slice datasets in energy range

Parameters
energy_min, energy_maxQuantity

Energy bounds to compute the flux point for.

namestr

Name of the sliced dataset.

Returns
datasetMapDataset

Sliced Dataset

slice_by_idx(slices, name=None)[source]

Slice sub dataset.

The slicing only applies to the maps that define the corresponding axes.

Parameters
slicesdict

Dict of axes names and integers or slice object pairs. Contains one element for each non-spatial dimension. For integer indexing the corresponding axes is dropped from the map. Axes not specified in the dict are kept unchanged.

namestr

Name of the sliced dataset.

Returns
map_outMap

Sliced map object.

stack(other)[source]

Stack this dataset with another one.

Safe mask is applied to compute the stacked counts vector. Counts outside each dataset safe mask are lost.

Stacking is performed in-place.

The stacking of 2 datasets is implemented as follows. Here, \(k\) denotes a bin in reconstructed energy and \(j = {1,2}\) is the dataset number

The mask_safe of each dataset is defined as:

\[\begin{split}\epsilon_{jk} =\left\{\begin{array}{cl} 1, & \mbox{if k is inside the energy thresholds}\\ 0, & \mbox{otherwise} \end{array}\right.\end{split}\]

Then the total counts and counts_off are computed according to:

\[ \begin{align}\begin{aligned}\overline{\mathrm{n_{on}}}_k = \mathrm{n_{on}}_{1k} \cdot \epsilon_{1k} + \mathrm{n_{on}}_{2k} \cdot \epsilon_{2k}\\\overline{\mathrm{n_{off}}}_k = \mathrm{n_{off}}_{1k} \cdot \epsilon_{1k} + \mathrm{n_{off}}_{2k} \cdot \epsilon_{2k}\end{aligned}\end{align} \]

The stacked safe_mask is then:

\[\overline{\epsilon_k} = \epsilon_{1k} OR \epsilon_{2k}\]

In each energy bin \(k\), the count excess is computed taking into account the ON acceptance, \(a_{on}_k\) and the OFF one: acceptance_off, \(a_{off}_k\). They define the \(\alpha_k=a_{on}_k/a_{off}_k\) factors such that \(n_{ex}_k = n_{on}_k - \alpha_k n_{off}_k\). We define the stacked value of \(\overline{{a}_{on}}_k = 1\) so that:

\[\overline{{a}_{off}}_k = \frac{\overline{\mathrm {n_{off}}}}{\alpha_{1k} \cdot \mathrm{n_{off}}_{1k} \cdot \epsilon_{1k} + \alpha_{2k} \cdot \mathrm{n_{off}}_{2k} \cdot \epsilon_{2k}}\]

The stacking of \(j\) elements is implemented as follows. \(k\) and \(l\) denote a bin in reconstructed and true energy, respectively.

\[ \begin{align}\begin{aligned}\begin{split}\epsilon_{jk} =\left\{\begin{array}{cl} 1, & \mbox{if bin k is inside the energy thresholds}\\ 0, & \mbox{otherwise} \end{array}\right.\end{split}\\\overline{t} = \sum_{j} t_i\\\overline{\mathrm{aeff}}_l = \frac{\sum_{j}\mathrm{aeff}_{jl} \cdot t_j}{\overline{t}}\\\overline{\mathrm{edisp}}_{kl} = \frac{\sum_{j} \mathrm{edisp}_{jkl} \cdot \mathrm{aeff}_{jl} \cdot t_j \cdot \epsilon_{jk}}{\sum_{j} \mathrm{aeff}_{jl} \cdot t_j}\end{aligned}\end{align} \]
Parameters
otherSpectrumDatasetOnOff

the dataset to stack to the current one

Examples

>>> from gammapy.datasets import SpectrumDatasetOnOff
>>> obs_ids = [23523, 23526, 23559, 23592]
>>> datasets = []
>>> for obs in obs_ids:
>>>     filename = "$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs{}.fits"
>>>     ds = SpectrumDatasetOnOff.from_ogip_files(filename.format(obs))
>>>     datasets.append(ds)
>>> stacked = datasets[0]
>>> for ds in datasets[1:]:
>>>     stacked.stack(ds)
>>> print(stacked)
stat_array()[source]

Likelihood per bin given the current model parameters

stat_sum()

Total statistic given the current model parameters.

to_dict(filename, *args, **kwargs)[source]

Convert to dict for YAML serialization.

to_hdulist()

Convert map dataset to list of HDUs.

Returns
hdulistHDUList

Map dataset list of HDUs.

to_image(name=None)

Create images by summing over the reconstructed energy axis.

Parameters
namestr

Name of the new dataset.

Returns
datasetMapDataset or SpectrumDataset

Dataset integrated over non-spatial axes.

to_ogip_files(outdir=None, use_sherpa=False, overwrite=False)[source]

Write OGIP files.

If you want to use the written files with Sherpa you have to set the use_sherpa flag. Then all files will be written in units ‘keV’ and ‘cm2’.

The naming scheme is fixed, with {name} the dataset name:

  • PHA file is named pha_obs{name}.fits

  • BKG file is named bkg_obs{name}.fits

  • ARF file is named arf_obs{name}.fits

  • RMF file is named rmf_obs{name}.fits

Parameters
outdirpathlib.Path

output directory, default: pwd

use_sherpabool, optional

Write Sherpa compliant files, default: False

overwritebool

Overwrite existing files?

to_spectrum_dataset(name=None)[source]

Convert a SpectrumDatasetOnOff to a SpectrumDataset The background model template is taken as alpha*counts_off

Parameters
name: str

Name of the new dataset

Returns
dataset: SpectrumDataset

SpectrumDatset with cash statistics

write(filename, overwrite)[source]

Write spectrum dataset on off to file.

Currently only the OGIP format is supported

Parameters
filenamestr

Filename to write to.

overwritebool

Overwrite existing file.