Models¶
-
class
gammapy.modeling.models.Models(models=None)[source]¶ Bases:
gammapy.modeling.models.core.DatasetModels,collections.abc.MutableSequenceSky model collection.
Attributes Summary
List of unique parameter names as model_name.par_type.par_name
Methods Summary
append(value)S.append(value) – append value to the end of the sequence
clear()copy()A deep copy.
count(value)extend(values)S.extend(iterable) – extend sequence by appending elements from the iterable
from_dict(data[, path])Create from dict.
from_yaml(yaml_str[, path])Create from YAML string.
index(value, [start, [stop]])Raises ValueError if the value is not present.
insert(idx, model)S.insert(index, value) – insert value before index
pop([index])Raise IndexError if list is empty or index is out of range.
read(filename)Read from YAML file.
read_covariance(path[, filename])Read covariance data from file
remove(value)S.remove(value) – remove first occurrence of value.
reverse()S.reverse() – reverse IN PLACE
select([dataset_name, tag, name_substring])Select subset of models correspondiog to a given dataset
to_dict([full_output])Convert to dict.
to_yaml([full_output])Convert to YAML string.
write(path[, overwrite, full_output, …])Write to YAML file.
write_covariance(filename, **kwargs)Write covariance to file
Attributes Documentation
-
covariance¶
-
names¶
-
parameters¶
-
parameters_unique_names¶ List of unique parameter names as model_name.par_type.par_name
Methods Documentation
-
append(value)¶ S.append(value) – append value to the end of the sequence
-
clear() → None -- remove all items from S¶
-
copy()¶ A deep copy.
-
count(value) → integer -- return number of occurrences of value¶
-
extend(values)¶ S.extend(iterable) – extend sequence by appending elements from the iterable
-
classmethod
from_dict(data, path='')¶ Create from dict.
-
classmethod
from_yaml(yaml_str, path='')¶ Create from YAML string.
-
index(value[, start[, stop]]) → integer -- return first index of value.¶ Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
-
pop([index]) → item -- remove and return item at index (default last).¶ Raise IndexError if list is empty or index is out of range.
-
classmethod
read(filename)¶ Read from YAML file.
-
read_covariance(path, filename='_covariance.dat', **kwargs)¶ Read covariance data from file
- Parameters
- filenamestr
Filename
- **kwargsdict
Keyword arguments passed to
read
-
remove(value)¶ S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.
-
reverse()¶ S.reverse() – reverse IN PLACE
-
select(dataset_name=None, tag=None, name_substring=None)¶ Select subset of models correspondiog to a given dataset
- Parameters
- dataset_namestr
Name of the dataset
- tagstr
Model tag
- name_substringstr
Substring contained in the model name
- Returns
- dataset_model
DatasetModels Dataset models
- dataset_model
-
to_dict(full_output=False)¶ Convert to dict.
-
to_yaml(full_output=False)¶ Convert to YAML string.
-
write(path, overwrite=False, full_output=False, write_covariance=True)¶ Write to YAML file.
- Parameters
- path
pathlib.Pathor str path to write files
- overwritebool
overwrite files
- write_covariancebool
save covariance or not
- path
-