SkyModel¶
-
class
gammapy.modeling.models.
SkyModel
(spectral_model, spatial_model=None, temporal_model=None, name=None, apply_irf=None, datasets_names=None)[source]¶ Bases:
gammapy.modeling.models.core.Model
Sky model component.
This model represents a factorised sky model. It has
Parameters
combining the spatial and spectral parameters.- Parameters
- spectral_model
SpectralModel
Spectral model
- spatial_model
SpatialModel
Spatial model (must be normalised to integrate to 1)
- temporal_model
temporalModel
Temporal model
- namestr
Model identifier
- apply_irfdict
Dictionary declaring which IRFs should be applied to this model. Options are {“exposure”: True, “psf”: True, “edisp”: True}
- datasets_nameslist of str
Which datasets this model is applied to.
- spectral_model
Attributes Summary
Parameters (
Parameters
)Methods Summary
__call__
(lon, lat, energy[, time])Call self as a function.
copy
([name])Copy SkyModel
create
(spectral_model[, spatial_model, …])Create a model instance.
evaluate
(lon, lat, energy[, time])Evaluate the model at given points.
evaluate_geom
(geom[, gti])Evaluate model on
Geom
.from_dict
(data)Create SkyModel from dict
from_parameters
(parameters, **kwargs)Create model from parameter list
integrate_geom
(geom[, gti])Integrate model on
Geom
.to_dict
([full_output])Create dict for YAML serilisation
Attributes Documentation
-
covariance
¶
-
default_parameters
= <gammapy.modeling.parameter.Parameters object>¶
-
frame
¶
-
name
¶
-
parameters
¶ Parameters (
Parameters
)
-
spatial_model
¶
-
spectral_model
¶
-
tag
= ['SkyModel', 'sky-model']¶
-
temporal_model
¶
Methods Documentation
-
classmethod
create
(spectral_model, spatial_model=None, temporal_model=None, **kwargs)[source]¶ Create a model instance.
- Parameters
- spectral_modelstr
Tag to create spectral model
- spatial_modelstr
Tag to create spatial model
- temporal_modelstr
Tag to create temporal model
- **kwargsdict
Keyword arguments passed to
SkyModel
- Returns
- modelSkyModel
Sky model
-
evaluate
(lon, lat, energy, time=None)[source]¶ Evaluate the model at given points.
The model evaluation follows numpy broadcasting rules.
Return differential surface brightness cube. At the moment in units:
cm-2 s-1 TeV-1 deg-2
-
classmethod
from_parameters
(parameters, **kwargs)¶ Create model from parameter list
- Parameters
- parameters
Parameters
Parameters for init
- parameters
- Returns
- model
Model
Model instance
- model