ExcessMapEstimator#
- class gammapy.estimators.ExcessMapEstimator(correlation_radius='0.1 deg', n_sigma=1, n_sigma_ul=2, selection_optional=None, energy_edges=None, correlate_off=True, spectral_model=None)[source]#
Bases:
gammapy.estimators.core.Estimator
Computes correlated excess, significance and error maps from a map dataset.
If a model is set on the dataset the excess map estimator will compute the excess taking into account the predicted counts of the model.
..note:
By default the excess estimator correlates the off counts as well to avoid artifacts at the edges of the :term:`FoV` for stacked on-off datasets. However when the on-off dataset has been derived from a ring background estimate, this leads to the off counts being correlated twice. To avoid artifacts and the double correlation, the `ExcessMapEstimator` has to be applied per dataset and the resulting maps need to be stacked, taking the :term:`FoV` cut into account.
- Parameters
- correlation_radius~astropy.coordinate.Angle
correlation radius to use
- n_sigmafloat
Confidence level for the asymmetric errors expressed in number of sigma.
- n_sigma_ulfloat
Confidence level for the upper limits expressed in number of sigma.
- selection_optionallist of str
Which additional maps to estimate besides delta TS, significance and symmetric error. Available options are:
“all”: all the optional steps are executed
“errn-errp”: estimate asymmetric errors.
“ul”: estimate upper limits.
Default is None so the optional steps are not executed.
- energy_edges
Quantity
Energy edges of the target excess maps bins.
- correlate_offbool
Correlate OFF events. Default is True.
- spectral_model
SpectralModel
Spectral model used for the computation of the flux map. If None, a Power Law of index 2 is assumed (default).
Examples
>>> from gammapy.datasets import MapDataset >>> from gammapy.estimators import ExcessMapEstimator >>> dataset = MapDataset.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz") >>> estimator = ExcessMapEstimator(correlation_radius="0.1 deg") >>> result = estimator.run(dataset) >>> print(result) FluxMaps -------- geom : WcsGeom axes : ['lon', 'lat', 'energy'] shape : (320, 240, 1) quantities : ['npred', 'npred_excess', 'counts', 'ts', 'sqrt_ts', 'norm', 'norm_err'] ref. model : pl n_sigma : 1 n_sigma_ul : 2 sqrt_ts_threshold_ul : 2 sed type init : likelihood
Attributes Summary
Config parameters
Methods Summary
copy
()Copy estimator
estimate_excess_map
(dataset)Estimate excess and ts maps for single dataset.
run
(dataset)Compute correlated excess, Li & Ma significance and flux maps
Attributes Documentation
- config_parameters#
Config parameters
- correlation_radius#
- selection_optional#
- tag = 'ExcessMapEstimator'#
Methods Documentation
- copy()#
Copy estimator
- estimate_excess_map(dataset)[source]#
Estimate excess and ts maps for single dataset.
If exposure is defined, a flux map is also computed.
- Parameters
- dataset
MapDataset
Map dataset
- dataset
- run(dataset)[source]#
Compute correlated excess, Li & Ma significance and flux maps
If a model is set on the dataset the excess map estimator will compute the excess taking into account the predicted counts of the model.
- Parameters
- dataset
MapDataset
orMapDatasetOnOff
Map dataset
- dataset
- Returns
- maps
FluxMaps
Flux maps
- maps