PSFKing#
- class gammapy.irf.PSFKing(axes, data=0, unit='', is_pointlike=False, fov_alignment=FoVAlignment.RADEC, meta=None, interp_kwargs=None)[source]#
Bases:
gammapy.irf.psf.parametric.ParametricPSF
King profile analytical PSF depending on energy and offset.
This PSF parametrisation and FITS data format is described here: PSF_KING.
- Parameters
- axeslist of
MapAxis
orMapAxes
Data axes, required are [“energy_true”, “offset”]
- metadict
Meta data
- axeslist of
Attributes Summary
MapAxes
Alignment of the field of view coordinate axes, see
FoVAlignment
Whether the IRF explicitly depends on offset
Whether the IRF is pointlike of full containment.
Quantity
Map unit (
Unit
)Methods Summary
containment
(rad, **kwargs)Containment of the PSF at given axes coordinates
containment_radius
(fraction[, factor])Containment radius at given axes coordinates
cumsum
(axis_name)Compute cumsum along a given axis
evaluate
(rad, **kwargs)Evaluate the PSF model.
evaluate_containment
(rad, gamma, sigma)Containment of the PSF at given axes coordinates
evaluate_direct
(rad, gamma, sigma)Evaluate the PSF model.
evaluate_parameters
(energy_true, offset)Evaluate analytic PSF parameters at a given energy and offset.
from_hdulist
(hdulist[, hdu, format])Create from
HDUList
.from_table
(table[, format])Create parametric psf from
Table
.info
([fraction, energy_true, offset])Print PSF summary info.
integral
(axis_name, **kwargs)Compute integral along a given axis
integrate_log_log
(axis_name, **kwargs)Integrate along a given axis.
interp_missing_data
(axis_name)Interpolate missing data along a given axis
is_allclose
(other[, rtol_axes, atol_axes])Compare two data IRFs for equivalency
Normalize parametric PSF
pad
(pad_width, axis_name, **kwargs)Pad irf along a given axis.
peek
([figsize])Quick-look summary plots.
plot_containment_radius
([ax, fraction, add_cbar])Plot containment image with energy and theta axes.
plot_containment_radius_vs_energy
([ax, ...])Plot containment fraction as a function of energy.
plot_psf_vs_rad
([ax, offset, energy_true])Plot PSF vs rad.
read
(filename[, hdu, format])Read from file.
to_hdulist
([format])to_psf3d
([rad])Create a PSF3D from a parametric PSF.
to_table
([format])Convert PSF table data to table.
to_table_hdu
([format])Convert to
BinTableHDU
.to_unit
(unit)Convert IRF to unit.
write
(filename, *args, **kwargs)Write IRF to fits.
Attributes Documentation
- axes#
MapAxes
- data#
- default_interp_kwargs = {'bounds_error': False, 'fill_value': None}#
- fov_alignment#
Alignment of the field of view coordinate axes, see
FoVAlignment
- has_offset_axis#
Whether the IRF explicitly depends on offset
- is_pointlike#
Whether the IRF is pointlike of full containment.
- quantity#
Quantity
- required_axes = ['energy_true', 'offset']#
- required_parameters = ['gamma', 'sigma']#
- tag = 'psf_king'#
Methods Documentation
- containment(rad, **kwargs)#
Containment of the PSF at given axes coordinates
- containment_radius(fraction, factor=20, **kwargs)#
Containment radius at given axes coordinates
- cumsum(axis_name)#
Compute cumsum along a given axis
- Parameters
- axis_namestr
Along which axis to integrate.
- Returns
- irf
IRF
Cumsum IRF
- irf
- evaluate(rad, **kwargs)#
Evaluate the PSF model.
- static evaluate_containment(rad, gamma, sigma)[source]#
Containment of the PSF at given axes coordinates
- static evaluate_direct(rad, gamma, sigma)[source]#
Evaluate the PSF model.
Formula is given here: PSF_KING.
- evaluate_parameters(energy_true, offset)#
Evaluate analytic PSF parameters at a given energy and offset.
Uses nearest-neighbor interpolation.
- classmethod from_hdulist(hdulist, hdu=None, format='gadf-dl3')#
Create from
HDUList
.- Parameters
- hdulist
HDUList
HDU list
- hdustr
HDU name
- format{“gadf-dl3”}
Format specification
- hdulist
- Returns
- irf
IRF
IRF class
- irf
- classmethod from_table(table, format='gadf-dl3')#
Create parametric psf from
Table
.- Parameters
- table
Table
Table info.
- table
- Returns
- psf
ParametricPSF
PSF class
- psf
- info(fraction=(0.68, 0.95), energy_true=<Quantity [[ 1.], [10.]] TeV>, offset=<Quantity 0. deg>)#
Print PSF summary info.
The containment radius for given fraction, energies and thetas is computed and printed on the command line.
- Parameters
- fractionlist
Containment fraction to compute containment radius for.
- energy_true
Quantity
Energies to compute containment radius for.
- offset
Quantity
Offset to compute containment radius for.
- Returns
- ssstring
Formatted string containing the summary info.
- integral(axis_name, **kwargs)#
Compute integral along a given axis
This method uses interpolation of the cumulative sum.
- Parameters
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF
- Returns
- array
Quantity
Returns 2D array with axes offset
- array
- integrate_log_log(axis_name, **kwargs)#
Integrate along a given axis.
This method uses log-log trapezoidal integration.
- Parameters
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF
- Returns
- array
Quantity
Returns 2D array with axes offset
- array
- interp_missing_data(axis_name)#
Interpolate missing data along a given axis
- is_allclose(other, rtol_axes=0.001, atol_axes=1e-06, **kwargs)#
Compare two data IRFs for equivalency
- Parameters
- other
gammapy.irfs.ParametricPSF
The PSF to compare against
- rtol_axesfloat
Relative tolerance for the axes comparison.
- atol_axesfloat
Relative tolerance for the axes comparison.
- **kwargsdict
keywords passed to
numpy.allclose
- other
- Returns
- is_allclosebool
Whether the IRF is all close.
- normalize()#
Normalize parametric PSF
- pad(pad_width, axis_name, **kwargs)#
Pad irf along a given axis.
- Parameters
- pad_width{sequence, array_like, int}
Number of pixels padded to the edges of each axis.
- axis_namestr
Which axis to downsample. By default spatial axes are padded.
- **kwargsdict
Keyword argument forwarded to
pad
- Returns
- irf
IRF
Padded irf
- irf
- peek(figsize=(15, 5))#
Quick-look summary plots.
- Parameters
- figsizetuple
Size of the figure.
- plot_containment_radius(ax=None, fraction=0.68, add_cbar=True, **kwargs)#
Plot containment image with energy and theta axes.
- Parameters
- ax
Axes
Axes to plot on.
- fractionfloat
Containment fraction between 0 and 1.
- add_cbarbool
Add a colorbar
- **kwargsdict
Keyword arguments passed to
pcolormesh
- ax
- Returns
- ax
Axes
Axes to plot on.
- ax
- plot_containment_radius_vs_energy(ax=None, fraction=(0.68, 0.95), offset=<Quantity [0., 1.] deg>, **kwargs)#
Plot containment fraction as a function of energy.
- plot_psf_vs_rad(ax=None, offset=<Quantity [0.] deg>, energy_true=<Quantity [ 0.1, 1., 10. ] TeV>, **kwargs)#
Plot PSF vs rad.
- classmethod read(filename, hdu=None, format='gadf-dl3')#
Read from file.
- Parameters
- filenamestr or
Path
Filename
- hdustr
HDU name
- format{“gadf-dl3”}
Format specification
- filenamestr or
- Returns
- irf
IRF
IRF class
- irf
- to_hdulist(format='gadf-dl3')#
- to_psf3d(rad=None)#
Create a PSF3D from a parametric PSF.
It will be defined on the same energy and offset values than the input psf.
- to_table(format='gadf-dl3')#
Convert PSF table data to table.
- Parameters
- format{“gadf-dl3”}
Format specification
- Returns
- hdu_list
HDUList
PSF in HDU list format.
- hdu_list
- to_table_hdu(format='gadf-dl3')#
Convert to
BinTableHDU
.- Parameters
- format{“gadf-dl3”}
Format specification
- Returns
- hdu
BinTableHDU
IRF data table hdu
- hdu
- to_unit(unit)#
Convert IRF to unit.