ExcessMapEstimator#
- class gammapy.estimators.ExcessMapEstimator(correlation_radius='0.1 deg', n_sigma=1, n_sigma_ul=2, selection_optional=None, energy_edges=None, correlate_off=True, spectral_model=None)[source]#
Bases:
gammapy.estimators.core.Estimator
Computes correlated excess, significance and error maps from a map dataset.
If a model is set on the dataset the excess map estimator will compute the excess taking into account the predicted counts of the model.
Note
By default the excess estimator correlates the off counts as well to avoid artifacts at the edges of the FoV for stacked on-off datasets. However when the on-off dataset has been derived from a ring background estimate, this leads to the off counts being correlated twice. To avoid artifacts and the double correlation, the
ExcessMapEstimator
has to be applied per dataset and the resulting maps need to be stacked, taking the FoV cut into account.- Parameters
- correlation_radius~astropy.coordinate.Angle
correlation radius to use
- n_sigmafloat
Confidence level for the asymmetric errors expressed in number of sigma.
- n_sigma_ulfloat
Confidence level for the upper limits expressed in number of sigma.
- selection_optionallist of str
Which additional maps to estimate besides delta TS, significance and symmetric error. Available options are:
“all”: all the optional steps are executed
“errn-errp”: estimate asymmetric errors.
“ul”: estimate upper limits.
Default is None so the optional steps are not executed.
- energy_edges
Quantity
Energy edges of the target excess maps bins.
- correlate_offbool
Correlate OFF events. Default is True.
- spectral_model
SpectralModel
Spectral model used for the computation of the flux map. If None, a Power Law of index 2 is assumed (default).
Examples
>>> from gammapy.datasets import MapDataset >>> from gammapy.estimators import ExcessMapEstimator >>> dataset = MapDataset.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz") >>> estimator = ExcessMapEstimator(correlation_radius="0.1 deg") >>> result = estimator.run(dataset) >>> print(result) FluxMaps -------- geom : WcsGeom axes : ['lon', 'lat', 'energy'] shape : (320, 240, 1) quantities : ['npred', 'npred_excess', 'counts', 'ts', 'sqrt_ts', 'norm', 'norm_err'] # noqa: E501 ref. model : pl n_sigma : 1 n_sigma_ul : 2 sqrt_ts_threshold_ul : 2 sed type init : likelihood
Attributes Summary
Config parameters
Methods Summary
copy
()Copy estimator
estimate_excess_map
(dataset)Estimate excess and ts maps for a single dataset.
estimate_exposure_reco_energy
(dataset, ...)Estimate exposure map in reconstructed energy for a single dataset
estimate_kernel
(dataset)Get the convolution kernel for the input dataset.
estimate_mask_default
(dataset)Get mask used by the estimator.
run
(dataset)Compute correlated excess, Li & Ma significance and flux maps
Attributes Documentation
- config_parameters#
Config parameters
- correlation_radius#
- selection_optional#
- tag = 'ExcessMapEstimator'#
Methods Documentation
- copy()#
Copy estimator
- estimate_excess_map(dataset)[source]#
Estimate excess and ts maps for a single dataset.
If exposure is defined, a flux map is also computed.
- Parameters
- dataset
MapDataset
Map dataset
- dataset
- estimate_exposure_reco_energy(dataset, kernel, mask)[source]#
- Estimate exposure map in reconstructed energy for a single dataset
assuming the given spectral_model shape.
- Parameters
- dataset
MapDataset
Map dataset
- kernel
Tophat2DKernel
Kernel
- mask
Map
Mask map
- dataset
- Returns
- reco_exposure
Map
Reconstructed exposure map
- reco_exposure
- estimate_kernel(dataset)[source]#
Get the convolution kernel for the input dataset.
- Parameters
- dataset
MapDataset
Input dataset.
- dataset
- Returns
- kernel
Tophat2DKernel
Kernel
- kernel
- static estimate_mask_default(dataset)[source]#
Get mask used by the estimator.
- Parameters
- dataset
MapDataset
Input dataset.
- dataset
- Returns
- mask
Map
Mask map
- mask
- run(dataset)[source]#
Compute correlated excess, Li & Ma significance and flux maps
If a model is set on the dataset the excess map estimator will compute the excess taking into account the predicted counts of the model.
- Parameters
- dataset
MapDataset
orMapDatasetOnOff
Map dataset
- dataset
- Returns
- maps
FluxMaps
Flux maps
- maps