DiskSpatialModel#
- class gammapy.modeling.models.DiskSpatialModel(**kwargs)[source]#
Bases:
gammapy.modeling.models.spatial.SpatialModel
Constant disk model.
For more information see Disk spatial model.
- Parameters
- lon_0, lat_0
Angle
Center position
- r_0
Angle
\(a\): length of the major semiaxis, in angular units.
- e
float
Eccentricity of the ellipse (\(0< e< 1\)).
- phi
Angle
Rotation angle \(\phi\): of the major semiaxis. Increases counter-clockwise from the North direction.
- edge_widthfloat
Width of the edge. The width is defined as the range within which the smooth edge of the model drops from 95% to 5% of its amplitude. It is given as fraction of r_0.
- frame{“icrs”, “galactic”}
Center position coordinate frame
- lon_0, lat_0
Attributes Summary
A model parameter.
A model parameter.
Minimal evaluation bin size (
Angle
).Evaluation radius (
Angle
).Evaluation region
Frozen status of a model, True if all parameters are frozen
A model parameter.
A model parameter.
Parameters (
Parameters
)A model parameter.
Spatial model center position (
SkyCoord
)Get 95% containment position error as (
EllipseSkyRegion
)Spatial model center position
(lon, lat)
in rad and frame of the modelA model parameter.
Methods Summary
__call__
(lon, lat[, energy])Call evaluate method
copy
(**kwargs)A deep copy.
evaluate
(lon, lat, lon_0, lat_0, r_0, e, ...)Evaluate model.
evaluate_geom
(geom)Evaluate model on
Geom
freeze
()Freeze all parameters
from_dict
(data)from_parameters
(parameters, **kwargs)Create model from parameter list
from_position
(position, **kwargs)Define the position of the model using a sky coord
from_region
(region, **kwargs)Create a
DiskSpatialModel from a ~regions.EllipseSkyRegion
integrate_geom
(geom[, oversampling_factor])Integrate model on
Geom
orRegionGeom
.plot
([ax, geom])Plot spatial model.
plot_error
([ax])Plot position error
plot_grid
([geom])Plot spatial model energy slices in a grid.
plot_interactive
([ax, geom])Plot spatial model.
plot_interative
([ax, geom])Deprecated since version v1.0.1.
reassign
(datasets_names, new_datasets_names)Reassign a model from one dataset to another
to_dict
([full_output])Create dict for YAML serilisation
to_region
(**kwargs)Model outline (
EllipseSkyRegion
).unfreeze
()Restore parameters frozen status to default
Attributes Documentation
- covariance#
- default_parameters = <gammapy.modeling.parameter.Parameters object>#
- e#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity
Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unit
or str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factor
andscale
- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- is_normbool
Whether the parameter represents the flux norm of the model.
- edge_width#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity
Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unit
or str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factor
andscale
- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- is_normbool
Whether the parameter represents the flux norm of the model.
- evaluation_bin_size_min#
Minimal evaluation bin size (
Angle
).The bin min size is defined as r_0*(1-edge_width)/10.
- evaluation_radius#
Evaluation radius (
Angle
).Set to the length of the semi-major axis plus the edge width.
- evaluation_region#
Evaluation region
- frozen#
Frozen status of a model, True if all parameters are frozen
- is_energy_dependent#
- lat_0#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity
Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unit
or str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factor
andscale
- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- is_normbool
Whether the parameter represents the flux norm of the model.
- lon_0#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity
Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unit
or str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factor
andscale
- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- is_normbool
Whether the parameter represents the flux norm of the model.
- parameters#
Parameters (
Parameters
)
- phi#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity
Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unit
or str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factor
andscale
- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- is_normbool
Whether the parameter represents the flux norm of the model.
- phi_0#
- position_error#
Get 95% containment position error as (
EllipseSkyRegion
)
- position_lonlat#
Spatial model center position
(lon, lat)
in rad and frame of the model
- r_0#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.- Parameters
- namestr
Name
- valuefloat or
Quantity
Value
- scalefloat, optional
Scale (sometimes used in fitting)
- unit
Unit
or str, optional Unit
- minfloat, optional
Minimum (sometimes used in fitting)
- maxfloat, optional
Maximum (sometimes used in fitting)
- frozenbool, optional
Frozen? (used in fitting)
- errorfloat
Parameter error
- scan_minfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_maxfloat
Minimum value for the parameter scan. Overwrites scan_n_sigma.
- scan_n_values: int
Number of values to be used for the parameter scan.
- scan_n_sigmaint
Number of sigmas to scan.
- scan_values: `numpy.array`
Scan values. Overwrites all of the scan keywords before.
- scale_method{‘scale10’, ‘factor1’, None}
Method used to set
factor
andscale
- interp{“lin”, “sqrt”, “log”}
Parameter scaling to use for the scan.
- is_normbool
Whether the parameter represents the flux norm of the model.
- tag = ['DiskSpatialModel', 'disk']#
- type#
Methods Documentation
- __call__(lon, lat, energy=None)#
Call evaluate method
- copy(**kwargs)#
A deep copy.
- freeze()#
Freeze all parameters
- classmethod from_dict(data)#
- classmethod from_parameters(parameters, **kwargs)#
Create model from parameter list
- Parameters
- parameters
Parameters
Parameters for init
- parameters
- Returns
- model
Model
Model instance
- model
- classmethod from_position(position, **kwargs)#
- Define the position of the model using a sky coord
The model will be created in the frame of the sky coord
- position
SkyCoord
Position
- Returns
- model
SpatialModel
Spatial model
- model
- classmethod from_region(region, **kwargs)[source]#
Create a
DiskSpatialModel from a ~regions.EllipseSkyRegion
- Parameters
- region
EllipseSkyRegion
or ~regions.CircleSkyRegion` region to create model from
- kwargskeywords passed to
DiskSpatialModel
- region
- Returns
- spatial_model
DiskSpatialModel
- spatial_model
- integrate_geom(geom, oversampling_factor=None)#
Integrate model on
Geom
orRegionGeom
.Integration is performed by simple rectangle approximation, the pixel center model value is multiplied by the pixel solid angle. An oversampling factor can be used for precision. By default, this parameter is set to None and an oversampling factor is automatically estimated based on the model estimation maximal bin width.
For a RegionGeom, the model is integrated on a tangent WCS projection in the region.
- Parameters
- geom
WcsGeom
orRegionGeom
The geom on which the integration is performed
- oversampling_factorint or None
The oversampling factor to use for integration. Default is None: the factor is estimated from the model minimimal bin size
- geom
- Returns
- map
Map
orgammapy.maps.RegionNDMap
Map containing the integral value in each spatial bin.
- map
- plot(ax=None, geom=None, **kwargs)#
Plot spatial model.
- plot_error(ax=None, **kwargs)#
Plot position error
- plot_grid(geom=None, **kwargs)#
Plot spatial model energy slices in a grid.
- plot_interactive(ax=None, geom=None, **kwargs)#
Plot spatial model.
- plot_interative(ax=None, geom=None, **kwargs)#
Deprecated since version v1.0.1: The plot_interative function is deprecated and may be removed in a future version. Use plot_interactive instead.
Plot spatial model.
- reassign(datasets_names, new_datasets_names)#
Reassign a model from one dataset to another
- Parameters
- datasets_namesstr or list
Name of the datasets where the model is currently defined
- new_datasets_namesstr or list
Name of the datasets where the model should be defined instead. If multiple names are given the two list must have the save length, as the reassignment is element-wise.
- Returns
- model
Model
Reassigned model.
- model
- to_dict(full_output=False)#
Create dict for YAML serilisation
- to_region(**kwargs)[source]#
Model outline (
EllipseSkyRegion
).
- unfreeze()#
Restore parameters frozen status to default