PiecewiseNormSpatialModel#

class gammapy.modeling.models.PiecewiseNormSpatialModel(coords, norms=None, interp='lin', **kwargs)[source]#

Bases: gammapy.modeling.models.spatial.SpatialModel

Piecewise spatial correction

with a free normalization at each fixed nodes.

For more information see Piecewise norm spatial model.

Parameters
coordgammapy.maps.MapCoord

Flat coordinates list at which the model values are given (nodes).

normsndarray or list of Parameter

Array with the initial norms of the model at energies energy. A normalisation parameters is created for each value. Default is one at each node.

interpstr

Interpolation scaling in {“log”, “lin”}. Default is “lin”

Attributes Summary

coords

Energy nodes

covariance

default_parameters

evaluation_bin_size_min

evaluation_radius

Evaluation radius

evaluation_region

Evaluation region

frozen

Frozen status of a model, True if all parameters are frozen

is_energy_dependent

norms

Norm values

parameters

Parameters (Parameters)

phi_0

position

Spatial model center position (SkyCoord)

position_error

Get 95% containment position error as (EllipseSkyRegion)

position_lonlat

Spatial model center position (lon, lat) in rad and frame of the model

tag

type

Methods Summary

__call__(lon, lat[, energy])

Call evaluate method

copy(**kwargs)

A deep copy.

evaluate(lon, lat[, energy])

Evaluate the model at given coordinates.

evaluate_geom(geom)

Evaluate model on Geom

freeze()

Freeze all parameters

from_dict(data)

Create model from dict

from_parameters(parameters, **kwargs)

Create model from parameters

from_position(position, **kwargs)

Define the position of the model using a sky coord

integrate_geom(geom[, oversampling_factor])

Integrate model on Geom or RegionGeom.

plot([ax, geom])

Plot spatial model.

plot_error([ax])

Plot position error

plot_grid([geom])

Plot spatial model energy slices in a grid.

plot_interactive([ax, geom])

Plot spatial model.

plot_interative([ax, geom])

Deprecated since version v1.0.1.

reassign(datasets_names, new_datasets_names)

Reassign a model from one dataset to another

to_dict([full_output])

Create dict for YAML serilisation

unfreeze()

Restore parameters frozen status to default

Attributes Documentation

coords#

Energy nodes

covariance#
default_parameters = <gammapy.modeling.parameter.Parameters object>#
evaluation_bin_size_min#
evaluation_radius#

Evaluation radius

evaluation_region#

Evaluation region

frozen#

Frozen status of a model, True if all parameters are frozen

is_energy_dependent#
norms#

Norm values

parameters#

Parameters (Parameters)

phi_0#
position#

Spatial model center position (SkyCoord)

position_error#

Get 95% containment position error as (EllipseSkyRegion)

position_lonlat#

Spatial model center position (lon, lat) in rad and frame of the model

tag = ['PiecewiseNormSpatialModel', 'piecewise-norm']#
type#

Methods Documentation

__call__(lon, lat, energy=None)#

Call evaluate method

copy(**kwargs)#

A deep copy.

evaluate(lon, lat, energy=None, **norms)[source]#

Evaluate the model at given coordinates.

evaluate_geom(geom)[source]#

Evaluate model on Geom

Parameters
geomWcsGeom

Map geometry

Returns
mapMap

Map containing the value in each spatial bin.

freeze()#

Freeze all parameters

classmethod from_dict(data)[source]#

Create model from dict

classmethod from_parameters(parameters, **kwargs)[source]#

Create model from parameters

classmethod from_position(position, **kwargs)#
Define the position of the model using a sky coord

The model will be created in the frame of the sky coord

positionSkyCoord

Position

Returns
modelSpatialModel

Spatial model

integrate_geom(geom, oversampling_factor=None)#

Integrate model on Geom or RegionGeom.

Integration is performed by simple rectangle approximation, the pixel center model value is multiplied by the pixel solid angle. An oversampling factor can be used for precision. By default, this parameter is set to None and an oversampling factor is automatically estimated based on the model estimation maximal bin width.

For a RegionGeom, the model is integrated on a tangent WCS projection in the region.

Parameters
geomWcsGeom or RegionGeom

The geom on which the integration is performed

oversampling_factorint or None

The oversampling factor to use for integration. Default is None: the factor is estimated from the model minimimal bin size

Returns
mapMap or gammapy.maps.RegionNDMap

Map containing the integral value in each spatial bin.

plot(ax=None, geom=None, **kwargs)#

Plot spatial model.

Parameters
axAxes, optional

Axis

geomWcsGeom, optional

Geom to use for plotting.

**kwargsdict

Keyword arguments passed to plot()

Returns
axAxes, optional

Axis

plot_error(ax=None, **kwargs)#

Plot position error

Parameters
axAxes, optional

Axis

**kwargsdict

Keyword arguments passed to plot()

Returns
axAxes, optional

Axis

plot_grid(geom=None, **kwargs)#

Plot spatial model energy slices in a grid.

Parameters
geomWcsGeom, optional

Geom to use for plotting.

**kwargsdict

Keyword arguments passed to plot()

Returns
axAxes, optional

Axis

plot_interactive(ax=None, geom=None, **kwargs)#

Plot spatial model.

Parameters
axAxes, optional

Axis

geomWcsGeom, optional

Geom to use for plotting.

**kwargsdict

Keyword arguments passed to plot()

Returns
axAxes, optional

Axis

plot_interative(ax=None, geom=None, **kwargs)#

Deprecated since version v1.0.1: The plot_interative function is deprecated and may be removed in a future version. Use plot_interactive instead.

Plot spatial model.

Parameters
axAxes, optional

Axis

geomWcsGeom, optional

Geom to use for plotting.

**kwargsdict

Keyword arguments passed to plot()

Returns
axAxes, optional

Axis

reassign(datasets_names, new_datasets_names)#

Reassign a model from one dataset to another

Parameters
datasets_namesstr or list

Name of the datasets where the model is currently defined

new_datasets_namesstr or list

Name of the datasets where the model should be defined instead. If multiple names are given the two list must have the save length, as the reassignment is element-wise.

Returns
modelModel

Reassigned model.

to_dict(full_output=False)[source]#

Create dict for YAML serilisation

unfreeze()#

Restore parameters frozen status to default