# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging
import numpy as np
from gammapy.datasets import Datasets
from gammapy.datasets.actors import DatasetsActor
from gammapy.modeling import Fit
from .core import Estimator
log = logging.getLogger(__name__)
[docs]
class ParameterEstimator(Estimator):
"""Model parameter estimator.
Estimates a model parameter for a group of datasets. Compute best fit value,
symmetric and delta(TS) for a given null value. Additionally asymmetric errors
as well as parameter upper limit and fit statistic profile can be estimated.
Parameters
----------
n_sigma : int
Sigma to use for asymmetric error computation. Default is 1.
n_sigma_ul : int
Sigma to use for upper limit computation. Default is 2.
null_value : float
Which null value to use for the parameter.
selection_optional : list of str, optional
Which additional quantities to estimate. Available options are:
* "all": all the optional steps are executed.
* "errn-errp": estimate asymmetric errors on parameter best fit value.
* "ul": estimate upper limits.
* "scan": estimate fit statistic profiles.
Default is None so the optional steps are not executed.
fit : `~gammapy.modeling.Fit`
Fit instance specifying the backend and fit options.
reoptimize : bool
Re-optimize other free model parameters. Default is True.
Examples
--------
>>> from gammapy.datasets import SpectrumDatasetOnOff, Datasets
>>> from gammapy.modeling.models import SkyModel, PowerLawSpectralModel
>>> from gammapy.estimators import ParameterEstimator
>>>
>>> filename = "$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs23523.fits"
>>> dataset = SpectrumDatasetOnOff.read(filename)
>>> datasets = Datasets([dataset])
>>> spectral_model = PowerLawSpectralModel(amplitude="3e-11 cm-2s-1TeV-1", index=2.7)
>>>
>>> model = SkyModel(spectral_model=spectral_model, name="Crab")
>>> model.spectral_model.amplitude.scan_n_values = 10
>>>
>>> for dataset in datasets:
... dataset.models = model
>>>
>>> estimator = ParameterEstimator(selection_optional="all")
>>> result = estimator.run(datasets, parameter="amplitude")
"""
tag = "ParameterEstimator"
_available_selection_optional = ["errn-errp", "ul", "scan"]
def __init__(
self,
n_sigma=1,
n_sigma_ul=2,
null_value=1e-150,
selection_optional=None,
fit=None,
reoptimize=True,
):
self.n_sigma = n_sigma
self.n_sigma_ul = n_sigma_ul
self.null_value = null_value
self.selection_optional = selection_optional
if fit is None:
fit = Fit()
self.fit = fit
self.reoptimize = reoptimize
[docs]
def estimate_best_fit(self, datasets, parameter):
"""Estimate parameter asymmetric errors.
Parameters
----------
datasets : `~gammapy.datasets.Datasets`
Datasets.
parameter : `Parameter`
For which parameter to get the value.
Returns
-------
result : dict
Dictionary with the various parameter estimation values. Entries are:
* parameter.name: best fit parameter value.
* "stat": best fit total stat.
* "success": boolean flag for fit success.
* parameter.name_err: covariance-based error estimate on parameter value.
"""
value, total_stat, success, error = np.nan, 0.0, False, np.nan
if np.any(datasets.contributes_to_stat):
result = self.fit.run(datasets=datasets)
value, error = parameter.value, parameter.error
total_stat = result.optimize_result.total_stat
success = result.success
return {
f"{parameter.name}": value,
"stat": total_stat,
"success": success,
f"{parameter.name}_err": error * self.n_sigma,
}
[docs]
def estimate_ts(self, datasets, parameter):
"""Estimate parameter ts.
Parameters
----------
datasets : `~gammapy.datasets.Datasets`
Datasets.
parameter : `Parameter`
For which parameter to get the value.
Returns
-------
result : dict
Dictionary with the test statistic of the best fit value compared to the null hypothesis. Entries are:
* "ts" : fit statistic difference with null hypothesis.
* "npred" : predicted number of counts per dataset.
* "stat_null" : total stat corresponding to the null hypothesis
"""
npred = self.estimate_npred(datasets=datasets)
if not np.any(datasets.contributes_to_stat):
stat = np.nan
npred["npred"][...] = np.nan
else:
stat = datasets.stat_sum()
with datasets.parameters.restore_status():
# compute ts value
parameter.value = self.null_value
if self.reoptimize:
parameter.frozen = True
_ = self.fit.optimize(datasets=datasets)
ts = datasets.stat_sum() - stat
stat_null = datasets.stat_sum()
return {"ts": ts, "npred": npred["npred"], "stat_null": stat_null}
[docs]
def estimate_errn_errp(self, datasets, parameter):
"""Estimate parameter asymmetric errors.
Parameters
----------
datasets : `~gammapy.datasets.Datasets`
Datasets.
parameter : `Parameter`
For which parameter to get the value.
Returns
-------
result : dict
Dictionary with the parameter asymmetric errors. Entries are:
* {parameter.name}_errp : positive error on parameter value.
* {parameter.name}_errn : negative error on parameter value.
"""
if not np.any(datasets.contributes_to_stat):
return {
f"{parameter.name}_errp": np.nan,
f"{parameter.name}_errn": np.nan,
}
self.fit.optimize(datasets=datasets)
res = self.fit.confidence(
datasets=datasets,
parameter=parameter,
sigma=self.n_sigma,
reoptimize=self.reoptimize,
)
return {
f"{parameter.name}_errp": res["errp"],
f"{parameter.name}_errn": res["errn"],
}
[docs]
def estimate_scan(self, datasets, parameter):
"""Estimate parameter statistic scan.
Parameters
----------
datasets : `~gammapy.datasets.Datasets`
The datasets used to estimate the model parameter.
parameter : `~gammapy.modeling.Parameter`
For which parameter to get the value.
Returns
-------
result : dict
Dictionary with the parameter fit scan values. Entries are:
* parameter.name_scan : parameter values scan.
* "stat_scan" : fit statistic values scan.
"""
scan_values = parameter.scan_values
if not np.any(datasets.contributes_to_stat):
return {
f"{parameter.name}_scan": scan_values,
"stat_scan": scan_values * np.nan,
}
self.fit.optimize(datasets=datasets)
profile = self.fit.stat_profile(
datasets=datasets, parameter=parameter, reoptimize=self.reoptimize
)
return {
f"{parameter.name}_scan": scan_values,
"stat_scan": profile["stat_scan"],
}
[docs]
def estimate_ul(self, datasets, parameter):
"""Estimate parameter ul.
Parameters
----------
datasets : `~gammapy.datasets.Datasets`
The datasets used to estimate the model parameter.
parameter : `~gammapy.modeling.Parameter`
For which parameter to get the value.
Returns
-------
result : dict
Dictionary with the parameter upper limits. Entries are:
* parameter.name_ul : upper limit on parameter value.
"""
if not np.any(datasets.contributes_to_stat):
return {f"{parameter.name}_ul": np.nan}
self.fit.optimize(datasets=datasets)
res = self.fit.confidence(
datasets=datasets,
parameter=parameter,
sigma=self.n_sigma_ul,
reoptimize=self.reoptimize,
)
return {f"{parameter.name}_ul": res["errp"] + parameter.value}
[docs]
@staticmethod
def estimate_counts(datasets):
"""Estimate counts for the flux point.
Parameters
----------
datasets : Datasets
Datasets.
Returns
-------
result : dict
Dictionary with an array with one entry per dataset with the sum of the
masked counts.
"""
counts = []
for dataset in datasets:
mask = dataset.mask
counts.append(dataset.counts.data[mask].sum())
return {"counts": np.array(counts, dtype=int), "datasets": datasets.names}
[docs]
@staticmethod
def estimate_npred(datasets):
"""Estimate npred for the flux point.
Parameters
----------
datasets : `~gammapy.datasets.Datasets`
Datasets.
Returns
-------
result : dict
Dictionary with an array with one entry per dataset with the sum of the
masked npred.
"""
npred = []
for dataset in datasets:
mask = dataset.mask
npred.append(dataset.npred().data[mask].sum())
return {"npred": np.array(npred), "datasets": datasets.names}
[docs]
def run(self, datasets, parameter):
"""Run the parameter estimator.
Parameters
----------
datasets : `~gammapy.datasets.Datasets`
The datasets used to estimate the model parameter.
parameter : `str` or `~gammapy.modeling.Parameter`
For which parameter to run the estimator.
Returns
-------
result : dict
Dictionary with the various parameter estimation values.
"""
if not isinstance(datasets, DatasetsActor):
datasets = Datasets(datasets)
parameter = datasets.parameters[parameter]
with datasets.parameters.restore_status():
if not self.reoptimize:
datasets.parameters.freeze_all()
parameter.frozen = False
result = self.estimate_best_fit(datasets, parameter)
result.update(self.estimate_ts(datasets, parameter))
if "errn-errp" in self.selection_optional:
result.update(self.estimate_errn_errp(datasets, parameter))
if "ul" in self.selection_optional:
result.update(self.estimate_ul(datasets, parameter))
if "scan" in self.selection_optional:
result.update(self.estimate_scan(datasets, parameter))
result.update(self.estimate_counts(datasets))
return result