ParameterEstimator#
- class gammapy.estimators.ParameterEstimator(n_sigma=1, n_sigma_ul=2, null_value=1e-150, selection_optional=None, fit=None, reoptimize=True)[source]#
Bases:
Estimator
Model parameter estimator.
Estimates a model parameter for a group of datasets. Compute best fit value, symmetric and delta(TS) for a given null value. Additionally asymmetric errors as well as parameter upper limit and fit statistic profile can be estimated.
- Parameters:
- n_sigmaint
Sigma to use for asymmetric error computation. Default is 1.
- n_sigma_ulint
Sigma to use for upper limit computation. Default is 2.
- null_valuefloat
Which null value to use for the parameter.
- selection_optionallist of str, optional
Which additional quantities to estimate. Available options are:
“all”: all the optional steps are executed.
“errn-errp”: estimate asymmetric errors on parameter best fit value.
“ul”: estimate upper limits.
“scan”: estimate fit statistic profiles.
Default is None so the optional steps are not executed.
- fit
Fit
Fit instance specifying the backend and fit options.
- reoptimizebool
Re-optimize other free model parameters. Default is True.
Examples
>>> from gammapy.datasets import SpectrumDatasetOnOff, Datasets >>> from gammapy.modeling.models import SkyModel, PowerLawSpectralModel >>> from gammapy.estimators import ParameterEstimator >>> >>> filename = "$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs23523.fits" >>> dataset = SpectrumDatasetOnOff.read(filename) >>> datasets = Datasets([dataset]) >>> spectral_model = PowerLawSpectralModel(amplitude="3e-11 cm-2s-1TeV-1", index=2.7) >>> >>> model = SkyModel(spectral_model=spectral_model, name="Crab") >>> model.spectral_model.amplitude.scan_n_values = 10 >>> >>> for dataset in datasets: ... dataset.models = model >>> >>> estimator = ParameterEstimator(selection_optional="all") >>> result = estimator.run(datasets, parameter="amplitude")
Attributes Summary
Configuration parameters.
Methods Summary
copy
()Copy estimator.
estimate_best_fit
(datasets, parameter)Estimate parameter asymmetric errors.
estimate_counts
(datasets)Estimate counts for the flux point.
estimate_errn_errp
(datasets, parameter)Estimate parameter asymmetric errors.
estimate_npred
(datasets)Estimate npred for the flux point.
estimate_scan
(datasets, parameter)Estimate parameter statistic scan.
estimate_ts
(datasets, parameter)Estimate parameter ts.
estimate_ul
(datasets, parameter)Estimate parameter ul.
run
(datasets, parameter)Run the parameter estimator.
Attributes Documentation
- config_parameters#
Configuration parameters.
- selection_optional#
- tag = 'ParameterEstimator'#
Methods Documentation
- copy()#
Copy estimator.
- estimate_best_fit(datasets, parameter)[source]#
Estimate parameter asymmetric errors.
- Parameters:
- datasets
Datasets
Datasets.
- parameter
Parameter
For which parameter to get the value.
- datasets
- Returns:
- resultdict
Dictionary with the various parameter estimation values. Entries are:
parameter.name: best fit parameter value.
“stat”: best fit total stat.
“success”: boolean flag for fit success.
parameter.name_err: covariance-based error estimate on parameter value.
- static estimate_counts(datasets)[source]#
Estimate counts for the flux point.
- Parameters:
- datasetsDatasets
Datasets.
- Returns:
- resultdict
Dictionary with an array with one entry per dataset with the sum of the masked counts.
- estimate_errn_errp(datasets, parameter)[source]#
Estimate parameter asymmetric errors.
- Parameters:
- datasets
Datasets
Datasets.
- parameter
Parameter
For which parameter to get the value.
- datasets
- Returns:
- resultdict
Dictionary with the parameter asymmetric errors. Entries are:
{parameter.name}_errp : positive error on parameter value.
{parameter.name}_errn : negative error on parameter value.
- static estimate_npred(datasets)[source]#
Estimate npred for the flux point.
- Parameters:
- datasets
Datasets
Datasets.
- datasets
- Returns:
- resultdict
Dictionary with an array with one entry per dataset with the sum of the masked npred.
- estimate_ts(datasets, parameter)[source]#
Estimate parameter ts.
- Parameters:
- datasets
Datasets
Datasets.
- parameter
Parameter
For which parameter to get the value.
- datasets
- Returns:
- resultdict
Dictionary with the test statistic of the best fit value compared to the null hypothesis. Entries are:
“ts” : fit statistic difference with null hypothesis.
“npred” : predicted number of counts per dataset.
“stat_null” : total stat corresponding to the null hypothesis