# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging
import numpy as np
import astropy.units as u
from astropy.coordinates.angle_utilities import angular_separation
from astropy.coordinates import Angle, Longitude, Latitude, SkyCoord
from ...utils.fitting import Parameter, Model
from ...maps import Map
from scipy.integrate import quad
__all__ = [
"SkySpatialModel",
"SkyPointSource",
"SkyGaussian",
"SkyDisk",
"SkyEllipse",
"SkyShell",
"SkyDiffuseConstant",
"SkyDiffuseMap",
]
log = logging.getLogger(__name__)
[docs]class SkySpatialModel(Model):
"""Sky spatial model base class."""
[docs] def __call__(self, lon, lat):
"""Call evaluate method"""
kwargs = dict()
for par in self.parameters.parameters:
kwargs[par.name] = par.quantity
return self.evaluate(lon, lat, **kwargs)
@property
def position(self):
"""Spatial model center position"""
try:
lon = self.lon_0.quantity
lat = self.lat_0.quantity
return SkyCoord(lon, lat, frame=self.frame)
except IndexError:
raise ValueError("Model does not have a defined center position")
[docs]class SkyPointSource(SkySpatialModel):
r"""Point Source.
.. math::
\phi(lon, lat) = \delta{(lon - lon_0, lat - lat_0)}
Parameters
----------
lon_0 : `~astropy.coordinates.Longitude`
:math:`lon_0`
lat_0 : `~astropy.coordinates.Latitude`
:math:`lat_0`
frame : {"galactic", "icrs"}
Coordinate frame of `lon_0` and `lat_0`.
"""
__slots__ = ["frame", "lon_0", "lat_0"]
def __init__(self, lon_0, lat_0, frame="galactic"):
self.frame = frame
self.lon_0 = Parameter(
"lon_0", Longitude(lon_0).wrap_at("180d"), min=-180, max=180
)
self.lat_0 = Parameter("lat_0", Latitude(lat_0), min=-90, max=90)
super().__init__([self.lon_0, self.lat_0])
@property
def evaluation_radius(self):
"""Returns the effective radius of the sky region where the model evaluates to non-zero.
For a Gaussian source, we fix it to :math:`0`.
Returns
-------
radius : `~astropy.units.Quantity`
Radius
"""
return 0 * u.deg
[docs] @staticmethod
def evaluate(lon, lat, lon_0, lat_0):
"""Evaluate the model (static function)."""
wrapval = lon_0 + 180 * u.deg
lon = Angle(lon).wrap_at(wrapval)
_, grad_lon = np.gradient(lon)
grad_lat, _ = np.gradient(lat)
lon_diff = np.abs((lon - lon_0) / grad_lon)
lat_diff = np.abs((lat - lat_0) / grad_lat)
lon_val = np.select([lon_diff < 1], [1 - lon_diff], 0) / np.abs(grad_lon)
lat_val = np.select([lat_diff < 1], [1 - lat_diff], 0) / np.abs(grad_lat)
return lon_val * lat_val
[docs]class SkyGaussian(SkySpatialModel):
r"""Two-dimensional symmetric Gaussian model
.. math::
\phi(\text{lon}, \text{lat}) = N \times \text{exp}\left\{-\frac{1}{2}
\frac{1-\text{cos}\theta}{1-\text{cos}\sigma}\right\}\,,
where :math:`\theta` is the angular separation between the center of the Gaussian and the evaluation point.
This angle is calculated on the celestial sphere using the function `angular.separation` defined in
`astropy.coordinates.angle_utilities`. The Gaussian is normalized to 1 on
the sphere:
.. math::
N = \frac{1}{4\pi a\left[1-\text{exp}(-1/a)\right]}\,,\,\,\,\,
a = 1-\text{cos}\sigma\,.
The normalization factor is in units of :math:`\text{sr}^{-1}`.
In the limit of small :math:`\theta` and :math:`\sigma`, this definition reduces to the usual form:
.. math::
\phi(\text{lon}, \text{lat}) = \frac{1}{2\pi\sigma^2} \exp{\left(-\frac{1}{2}
\frac{\theta^2}{\sigma^2}\right)}
Parameters
----------
lon_0 : `~astropy.coordinates.Longitude`
:math:`\text{lon}_0`
lat_0 : `~astropy.coordinates.Latitude`
:math:`\text{lat}_0`
sigma : `~astropy.coordinates.Angle`
:math:`\sigma`
frame : {"galactic", "icrs"}
Coordinate frame of `lon_0` and `lat_0`.
"""
__slots__ = ["frame", "lon_0", "lat_0", "sigma"]
def __init__(self, lon_0, lat_0, sigma, frame="galactic"):
self.frame = frame
self.lon_0 = Parameter(
"lon_0", Longitude(lon_0).wrap_at("180d"), min=-180, max=180
)
self.lat_0 = Parameter("lat_0", Latitude(lat_0), min=-90, max=90)
self.sigma = Parameter("sigma", Angle(sigma), min=0)
super().__init__([self.lon_0, self.lat_0, self.sigma])
@property
def evaluation_radius(self):
r"""Returns the effective radius of the sky region where the model evaluates to non-zero.
For a Gaussian source, we fix it to :math:`5\sigma`.
Returns
-------
radius : `~astropy.coordinates.Angle`
Radius in angular units
"""
return 5 * self.parameters["sigma"].quantity
[docs] @staticmethod
def evaluate(lon, lat, lon_0, lat_0, sigma):
"""Evaluate the model (static function)."""
sep = angular_separation(lon, lat, lon_0, lat_0)
a = 1.0 - np.cos(sigma)
norm = 1 / (4 * np.pi * a * (1.0 - np.exp(-1.0 / a)))
exponent = -0.5 * ((1 - np.cos(sep)) / a)
return u.Quantity(norm.value * np.exp(exponent).value, "sr-1", copy=False)
[docs]class SkyDisk(SkySpatialModel):
r"""Constant radial disk model.
.. math::
\phi(lon, lat) = \frac{1}{2 \pi (1 - \cos{r_0}) } \cdot
\begin{cases}
1 & \text{for } \theta \leq r_0 \\
0 & \text{for } \theta > r_0
\end{cases}
where :math:`\theta` is the sky separation
Parameters
----------
lon_0 : `~astropy.coordinates.Longitude`
:math:`lon_0`
lat_0 : `~astropy.coordinates.Latitude`
:math:`lat_0`
r_0 : `~astropy.coordinates.Angle`
:math:`r_0`
frame : {"galactic", "icrs"}
Coordinate frame of `lon_0` and `lat_0`.
"""
__slots__ = ["frame", "lon_0", "lat_0", "r_0"]
def __init__(self, lon_0, lat_0, r_0, frame="galactic"):
self.frame = frame
self.lon_0 = Parameter(
"lon_0", Longitude(lon_0).wrap_at("180d"), min=-180, max=180
)
self.lat_0 = Parameter("lat_0", Latitude(lat_0), min=-90, max=90)
self.r_0 = Parameter("r_0", Angle(r_0))
super().__init__([self.lon_0, self.lat_0, self.r_0])
@property
def evaluation_radius(self):
r"""Returns the effective radius of the sky region where the model evaluates to non-zero.
For a Disk source, we fix it to :math:`r_0`.
Returns
-------
radius : `~astropy.coordinates.Angle`
Radius in angular units
"""
return self.parameters["r_0"].quantity
[docs] @staticmethod
def evaluate(lon, lat, lon_0, lat_0, r_0):
"""Evaluate the model (static function)."""
sep = angular_separation(lon, lat, lon_0, lat_0)
# Surface area of a spherical cap, see https://en.wikipedia.org/wiki/Spherical_cap
norm = 1.0 / (2 * np.pi * (1 - np.cos(r_0)))
return u.Quantity(norm.value * (sep <= r_0), "sr-1", copy=False)
[docs]class SkyEllipse(SkySpatialModel):
r"""Constant elliptical model.
.. math::
\phi(\text{lon}, \text{lat}) =
\begin{cases}
N & \text{for } \,\,\,dist(F_1,P)+dist(F_2,P)\leq 2 a \\
0 & \text{otherwise }\,,
\end{cases}
where :math:`F_1` and :math:`F_2` represent the foci of the ellipse,
:math:`P` is a generic point of coordinates :math:`(\text{lon}, \text{lat})`,
:math:`a` is the major semiaxis of the ellipse and N is the model's
normalization, in units of :math:`\text{sr}^{-1}`.
The model is defined on the celestial sphere, with a normalization defined by:
.. math::
\int_{4\pi}\phi(\text{lon}, \text{lat}) \,d\Omega = 1\,.
Parameters
----------
lon_0 : `~astropy.coordinates.Longitude`
:math:`\text{lon}_0`: `lon` coordinate for the center of the ellipse.
lat_0 : `~astropy.coordinates.Latitude`
:math:`\text{lat}_0`: `lat` coordinate for the center of the ellipse.
semi_major : `~astropy.coordinates.Angle`
:math:`a`: length of the major semiaxis, in angular units.
e : `float`
Eccentricity of the ellipse (:math:`0< e< 1`).
theta : `~astropy.coordinates.Angle`
:math:`\theta`:
Rotation angle of the major semiaxis. The rotation angle increases clockwise
(i.e., East of North) from the positive `lon` axis.
frame : {"galactic", "icrs"}
Coordinate frame of `lon_0` and `lat_0`.
Examples
--------
.. plot::
:include-source:
import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u
from gammapy.image.models.core import SkyEllipse
from gammapy.maps import Map, WcsGeom
model = SkyEllipse("2 deg", "2 deg", "1 deg", 0.8, "30 deg")
m_geom = WcsGeom.create(binsz=0.01, width=(3, 3), skydir=(2, 2), coordsys="GAL", proj="AIT")
coords = m_geom.get_coord()
lon = coords.lon * u.deg
lat = coords.lat * u.deg
vals = model(lon, lat)
skymap = Map.from_geom(m_geom, data=vals.value)
_, ax, _ = skymap.smooth("0.05 deg").plot()
transform = ax.get_transform('galactic')
ax.scatter(2, 2, transform=transform, s=20, edgecolor='red', facecolor='red')
ax.text(2.0, 1.8, r"$(l_0, b_0)$", transform=transform, ha="center")
ax.plot([2, 2 + np.cos(np.pi / 6)], [2, 2 + np.sin(np.pi / 6)], color="r", transform=transform)
ax.hlines(y=2, color='r', linestyle='--', transform=transform, xmin=0, xmax=5)
ax.text(2.5, 2.06, r"$\theta$", transform=transform);
plt.show()
"""
__slots__ = ["frame", "lon_0", "lat_0", "semi_major", "e", "theta", "_offset_by"]
def __init__(self, lon_0, lat_0, semi_major, e, theta, frame="galactic"):
try:
from astropy.coordinates.angle_utilities import offset_by
self._offset_by = offset_by
except ImportError:
raise ImportError("The SkyEllipse model requires astropy>=3.1")
self.frame = frame
self.lon_0 = Parameter(
"lon_0", Longitude(lon_0).wrap_at("180d"), min=-180, max=180
)
self.lat_0 = Parameter("lat_0", Latitude(lat_0), min=-90, max=90)
self.semi_major = Parameter("semi_major", Angle(semi_major))
self.e = Parameter("e", e, min=0, max=1)
self.theta = Parameter("theta", Angle(theta))
super().__init__([self.lon_0, self.lat_0, self.semi_major, self.e, self.theta])
@property
def evaluation_radius(self):
r"""Returns the effective radius of the sky region where the model evaluates to non-zero.
For an elliptical source, we fix it to the length of the semi-major axis.
Returns
-------
radius : `~astropy.coordinates.Angle`
Radius in angular units
"""
radius = self.parameters["semi_major"].quantity
return radius
[docs] @staticmethod
def compute_norm(semi_major, e):
"""Compute the normalization factor."""
semi_minor = semi_major * np.sqrt(1 - e ** 2)
def integral_fcn(x, a, b):
A = 1 / np.sin(a) ** 2
B = 1 / np.sin(b) ** 2
C = A - B
cs2 = np.cos(x) ** 2
return 1 - np.sqrt(1 - 1 / (B + C * cs2))
return (
2 * quad(lambda x: integral_fcn(x, semi_major, semi_minor), 0, np.pi)[0]
) ** -1
[docs] def evaluate(self, lon, lat, lon_0, lat_0, semi_major, e, theta):
"""Evaluate the model (static function)."""
# find the foci of the ellipse
c = semi_major * e
lon_1, lat_1 = self._offset_by(lon_0, lat_0, 90 * u.deg - theta, c)
lon_2, lat_2 = self._offset_by(lon_0, lat_0, 270 * u.deg - theta, c)
sep_1 = angular_separation(lon, lat, lon_1, lat_1)
sep_2 = angular_separation(lon, lat, lon_2, lat_2)
in_ellipse = sep_1 + sep_2 <= 2 * semi_major
norm = SkyEllipse.compute_norm(semi_major, e)
return u.Quantity(norm * in_ellipse, "sr-1", copy=False)
[docs]class SkyShell(SkySpatialModel):
r"""Shell model.
.. math::
\phi(lon, lat) = \frac{3}{2 \pi (r_{out}^3 - r_{in}^3)} \cdot
\begin{cases}
\sqrt{r_{out}^2 - \theta^2} - \sqrt{r_{in}^2 - \theta^2} &
\text{for } \theta \lt r_{in} \\
\sqrt{r_{out}^2 - \theta^2} &
\text{for } r_{in} \leq \theta \lt r_{out} \\
0 & \text{for } \theta > r_{out}
\end{cases}
where :math:`\theta` is the sky separation and :math:`r_{\text{out}} = r_{\text{in}}` + width
Note that the normalization is a small angle approximation,
although that approximation is still very good even for 10 deg radius shells.
Parameters
----------
lon_0 : `~astropy.coordinates.Longitude`
:math:`lon_0`
lat_0 : `~astropy.coordinates.Latitude`
:math:`lat_0`
radius : `~astropy.coordinates.Angle`
Inner radius, :math:`r_{in}`
width : `~astropy.coordinates.Angle`
Shell width
frame : {"galactic", "icrs"}
Coordinate frame of `lon_0` and `lat_0`.
"""
__slots__ = ["frame", "lon_0", "lat_0", "radius", "width"]
def __init__(self, lon_0, lat_0, radius, width, frame="galactic"):
self.frame = frame
self.lon_0 = Parameter(
"lon_0", Longitude(lon_0).wrap_at("180d"), min=-180, max=180
)
self.lat_0 = Parameter("lat_0", Latitude(lat_0), min=-90, max=90)
self.radius = Parameter("radius", Angle(radius))
self.width = Parameter("width", Angle(width))
super().__init__([self.lon_0, self.lat_0, self.radius, self.width])
@property
def evaluation_radius(self):
r"""Returns the effective radius of the sky region where the model evaluates to non-zero.
Given by :math:`r_\text{out}`.
Returns
-------
radius : `~astropy.coordinates.Angle`
Radius in angular units
"""
return self.parameters["radius"].quantity + self.parameters["width"].quantity
[docs] @staticmethod
def evaluate(lon, lat, lon_0, lat_0, radius, width):
"""Evaluate the model (static function)."""
sep = angular_separation(lon, lat, lon_0, lat_0)
radius_out = radius + width
norm = 3 / (2 * np.pi * (radius_out ** 3 - radius ** 3))
with np.errstate(invalid="ignore"):
# np.where and np.select do not work with quantities, so we use the
# workaround with indexing
value = np.sqrt(radius_out ** 2 - sep ** 2)
mask = [sep < radius]
value[mask] = (value - np.sqrt(radius ** 2 - sep ** 2))[mask]
value[sep > radius_out] = 0
return norm * value
[docs]class SkyDiffuseConstant(SkySpatialModel):
"""Spatially constant (isotropic) spatial model.
Parameters
----------
value : `~astropy.units.Quantity`
Value
"""
__slots__ = ["value"]
frame = None
def __init__(self, value=1):
self.value = Parameter("value", value)
super().__init__([self.value])
@property
def evaluation_radius(self):
r"""Returns the effective radius of the sky region where the model evaluates to non-zero.
For a constant diffuse model, we fix it to None.
Returns
-------
radius : `~astropy.coordinates.Angle`
None
"""
return None
[docs] @staticmethod
def evaluate(lon, lat, value):
return value
[docs]class SkyDiffuseMap(SkySpatialModel):
"""Spatial sky map template model (2D).
This is for a 2D image. Use `~gammapy.cube.models.SkyDiffuseCube` for 3D cubes with
an energy axis.
Parameters
----------
map : `~gammapy.maps.Map`
Map template
norm : float
Norm parameter (multiplied with map values)
meta : dict, optional
Meta information, meta['filename'] will be used for serialization
normalize : bool
Normalize the input map so that it integrates to unity.
interp_kwargs : dict
Interpolation keyword arguments passed to `gammapy.maps.Map.interp_by_coord`.
Default arguments are {'interp': 'linear', 'fill_value': 0}.
"""
__slots__ = ["map", "norm", "meta", "_interp_kwargs"]
def __init__(self, map, norm=1, meta=None, normalize=True, interp_kwargs=None):
if (map.data < 0).any():
log.warning("Diffuse map has negative values. Check and fix this!")
self.map = map
if normalize:
self.normalize()
self.norm = Parameter("norm", norm)
self.meta = dict() if meta is None else meta
interp_kwargs = {} if interp_kwargs is None else interp_kwargs
interp_kwargs.setdefault("interp", "linear")
interp_kwargs.setdefault("fill_value", 0)
self._interp_kwargs = interp_kwargs
super().__init__([self.norm])
@property
def evaluation_radius(self):
r"""Returns the effective radius of the sky region where the model evaluates to non-zero.
For a DiffuseMap source, we fix it to half of the maximal dimension of the map.
Returns
-------
radius : `~astropy.coordinates.Angle`
Radius in angular units.
"""
return np.max(self.map.geom.width) / 2.0
[docs] def normalize(self):
"""Normalize the diffuse map model so that it integrates to unity."""
data = self.map.data / self.map.data.sum()
data /= self.map.geom.solid_angle().to_value("sr")
self.map = self.map.copy(data=data, unit="sr-1")
[docs] @classmethod
def read(cls, filename, normalize=True, **kwargs):
"""Read spatial template model from FITS image.
The default unit used if none is found in the file is ``sr-1``.
Parameters
----------
filename : str
FITS image filename.
normalize : bool
Normalize the input map so that it integrates to unity.
kwargs : dict
Keyword arguments passed to `Map.read()`.
"""
m = Map.read(filename, **kwargs)
if m.unit == "":
m.unit = "sr-1"
return cls(m, normalize=normalize)
[docs] def evaluate(self, lon, lat, norm):
"""Evaluate model."""
coord = {"lon": lon.to_value("deg"), "lat": lat.to_value("deg")}
val = self.map.interp_by_coord(coord, **self._interp_kwargs)
return u.Quantity(norm.value * val, self.map.unit, copy=False)
@property
def position(self):
"""`~astropy.coordinates.SkyCoord`"""
return self.map.geom.center_skydir