Source code for gammapy.spectrum.crab

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
from astropy import units as u
from ..utils.fitting import Parameters
from .models import PowerLaw, LogParabola, ExponentialCutoffPowerLaw, SpectralModel

__all__ = ["CrabSpectrum"]

# HESS publication: 2006A&A...457..899A
hess_pl = {
    "amplitude": 3.45e-11 * u.Unit("1 / (cm2 s TeV)"),
    "index": 2.63,
    "reference": 1 * u.TeV,
}

hess_ecpl = {
    "amplitude": 3.76e-11 * u.Unit("1 / (cm2 s TeV)"),
    "index": 2.39,
    "lambda_": 1 / (14.3 * u.TeV),
    "reference": 1 * u.TeV,
}

# HEGRA publication : 2004ApJ...614..897A
hegra = {
    "amplitude": 2.83e-11 * u.Unit("1 / (cm2 s TeV)"),
    "index": 2.62,
    "reference": 1 * u.TeV,
}

# MAGIC publication: 2015JHEAp...5...30A
# note that in the paper the beta of the LogParabola is given as negative in
# Table 1 (pag. 33), but should be positive to match gammapy LogParabola expression
# Also MAGIC uses log10 in the LogParabola expression, gammapy uses ln, hence
# the conversion factor
magic_lp = {
    "amplitude": 3.23e-11 * u.Unit("1 / (cm2 s TeV)"),
    "alpha": 2.47,
    "beta": 0.24 / np.log(10),
    "reference": 1 * u.TeV,
}

magic_ecpl = {
    "amplitude": 3.80e-11 * u.Unit("1 / (cm2 s TeV)"),
    "index": 2.21,
    "lambda_": 1 / (6.0 * u.TeV),
    "reference": 1 * u.TeV,
}


class MeyerCrabModel(SpectralModel):
    """Meyer 2010 log polynomial Crab spectral model.

    See 2010A%26A...523A...2M, Appendix D.
    """

    coefficients = np.array([-0.00449161, 0, 0.0473174, -0.179475, -0.53616, -10.2708])

    def __init__(self):
        self._parameters = Parameters()

    @staticmethod
    def evaluate(energy):
        polynomial = np.poly1d(MeyerCrabModel.coefficients)
        log_energy = np.log10(energy.to_value("TeV"))
        log_flux = polynomial(log_energy)
        flux = u.Quantity(np.power(10, log_flux), "erg / (cm2 s)", copy=False)
        return flux / energy ** 2


[docs]class CrabSpectrum: """Crab nebula spectral model. The Crab nebula is often used as a standard candle in gamma-ray astronomy. Fluxes and sensitivities are often quoted relative to the Crab spectrum. The following references are available: * 'meyer', http://adsabs.harvard.edu/abs/2010A%26A...523A...2M, Appendix D * 'hegra', http://adsabs.harvard.edu/abs/2000ApJ...539..317A * 'hess_pl' and 'hess_ecpl': http://adsabs.harvard.edu/abs/2006A%26A...457..899A * 'magic_lp' and 'magic_ecpl': http://adsabs.harvard.edu/abs/2015JHEAp...5...30A Parameters ---------- reference : {'meyer', 'hegra', 'hess_pl', 'hess_ecpl', 'magic_lp', 'magic_ecpl'} Which reference to use for the spectral model. Examples -------- Let's first import what we need:: import astropy.units as u from gammapy.spectrum import CrabSpectrum from gammapy.spectrum.models import PowerLaw Plot the 'hess_ecpl' reference Crab spectrum between 1 TeV and 100 TeV:: crab_hess_ecpl = CrabSpectrum('hess_ecpl') crab_hess_ecpl.model.plot([1, 100] * u.TeV) Use a reference crab spectrum as unit to measure a differential flux (at 10 TeV):: >>> pwl = PowerLaw(index=2.3, amplitude=1e-12 * u.Unit('1 / (cm2 s TeV)'), reference=1 * u.TeV) >>> crab = CrabSpectrum('hess_pl').model >>> energy = 10 * u.TeV >>> dnde_cu = (pwl(energy) / crab(energy)).to('%') >>> print(dnde_cu) 6.19699156377 % And the same for integral fluxes (between 1 and 10 TeV):: >>> # compute integral flux in crab units >>> emin, emax = [1, 10] * u.TeV >>> flux_int_cu = (pwl.integral(emin, emax) / crab.integral(emin, emax)).to('%') >>> print(flux_int_cu) 3.5350582166 % """ references = ["meyer", "hegra", "hess_pl", "hess_ecpl", "magic_lp", "magic_ecpl"] """Available references (see class docstring).""" def __init__(self, reference="meyer"): if reference == "meyer": model = MeyerCrabModel() elif reference == "hegra": model = PowerLaw(**hegra) elif reference == "hess_pl": model = PowerLaw(**hess_pl) elif reference == "hess_ecpl": model = ExponentialCutoffPowerLaw(**hess_ecpl) elif reference == "magic_lp": model = LogParabola(**magic_lp) elif reference == "magic_ecpl": model = ExponentialCutoffPowerLaw(**magic_ecpl) else: fmt = "Invalid reference: {!r}. Choices: {!r}" raise ValueError(fmt.format(reference, self.references)) self.model = model self.reference = reference