MapDataset¶
-
class
gammapy.cube.
MapDataset
(model, counts=None, exposure=None, mask=None, psf=None, edisp=None, background_model=None, likelihood='cash', evaluation_mode='local')[source]¶ Bases:
gammapy.utils.fitting.Dataset
Perform sky model likelihood fit on maps.
Parameters: - model :
SkyModel
orSkyModels
Source sky models.
- counts :
WcsNDMap
Counts cube
- exposure :
WcsNDMap
Exposure cube
- mask :
WcsNDMap
Mask to apply to the likelihood.
- psf :
PSFKernel
PSF kernel
- edisp :
EnergyDispersion
Energy dispersion
- background_model :
BackgroundModel
orBackgroundModels
Background models to use for the fit.
- likelihood : {“cash”, “cstat”}
Likelihood function to use for the fit.
- evaluation_mode : {“local”, “global”}
Model evaluation mode.
The “local” mode evaluates the model components on smaller grids to save computation time. This mode is recommended for local optimization algorithms. The “global” evaluation mode evaluates the model components on the full map. This mode is recommended for global optimization algorithms.
Attributes Summary
data_shape
Shape of the counts data (tuple) model
Sky model to fit ( SkyModel
orSkyModels
)parameters
List of parameters ( Parameters
)Methods Summary
likelihood
(parameters[, mask])Total likelihood given the current model parameters. likelihood_per_bin
()Likelihood per bin given the current model parameters npred
()Predicted source and background counts ( Map
).Attributes Documentation
-
data_shape
¶ Shape of the counts data (tuple)
-
model
¶ Sky model to fit (
SkyModel
orSkyModels
)
-
parameters
¶ List of parameters (
Parameters
)
Methods Documentation
- model :