PLSuperExpCutoff3FGL¶
-
class
gammapy.spectrum.models.
PLSuperExpCutoff3FGL
(index_1=1.5, index_2=2, amplitude='1e-12 cm-2 s-1 TeV-1', reference='1 TeV', ecut='10 TeV')[source]¶ Bases:
gammapy.spectrum.models.SpectralModel
Spectral super exponential cutoff power-law model used for 3FGL.
\[\phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma_1} \exp \left( \left(\frac{E_0}{E_{C}} \right)^{\Gamma_2} - \left(\frac{E}{E_{C}} \right)^{\Gamma_2} \right)\]Parameters: Examples
This is how to plot the default
PLSuperExpCutoff3FGL
model:from astropy import units as u from gammapy.spectrum.models import PLSuperExpCutoff3FGL secpl_3fgl = PLSuperExpCutoff3FGL() secpl_3fgl.plot(energy_range=[0.1, 100] * u.TeV) plt.show()
Attributes Summary
amplitude
ecut
index_1
index_2
parameters
Parameters ( Parameters
)reference
Methods Summary
__call__
(energy)Call evaluate method of derived classes copy
()A deep copy. energy_flux
(emin, emax, **kwargs)Compute energy flux in given energy range. energy_flux_error
(emin, emax, **kwargs)Compute energy flux in given energy range with error propagation. evaluate
(energy, amplitude, reference, ecut, …)Evaluate the model (static function). evaluate_error
(energy)Evaluate spectral model with error propagation. from_dict
(val)Create from dict. integral
(emin, emax, **kwargs)Integrate spectral model numerically. integral_error
(emin, emax, **kwargs)Integrate spectral model numerically with error propagation. inverse
(value[, emin, emax])Return energy for a given function value of the spectral model. plot
(energy_range[, ax, energy_unit, …])Plot spectral model curve. plot_error
(energy_range[, ax, energy_unit, …])Plot spectral model error band. spectral_index
(energy[, epsilon])Compute spectral index at given energy. to_dict
()Convert to dict. Attributes Documentation
-
amplitude
¶
-
ecut
¶
-
index_1
¶
-
index_2
¶
-
parameters
¶ Parameters (
Parameters
)
-
reference
¶
Methods Documentation
-
__call__
(energy)¶ Call evaluate method of derived classes
-
copy
()¶ A deep copy.
-
energy_flux
(emin, emax, **kwargs)¶ Compute energy flux in given energy range.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
- emin, emax :
-
energy_flux_error
(emin, emax, **kwargs)¶ Compute energy flux in given energy range with error propagation.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity
Lower bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
Returns: - energy_flux, energy_flux_error : tuple of
Quantity
Tuple of energy flux and energy flux error.
- emin, emax :
-
static
evaluate
(energy, amplitude, reference, ecut, index_1, index_2)[source]¶ Evaluate the model (static function).
-
evaluate_error
(energy)¶ Evaluate spectral model with error propagation.
Parameters: - energy :
Quantity
Energy at which to evaluate
Returns: - flux, flux_error : tuple of
Quantity
Tuple of flux and flux error.
- energy :
-
classmethod
from_dict
(val)¶ Create from dict.
-
integral
(emin, emax, **kwargs)¶ Integrate spectral model numerically.
\[F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE\]If array input for
emin
andemax
is given you have to setintervals=True
if you want the integral in each energy bin.Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
- emin, emax :
-
integral_error
(emin, emax, **kwargs)¶ Integrate spectral model numerically with error propagation.
Parameters: - emin, emax :
Quantity
Lower adn upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
Returns: - integral, integral_error : tuple of
Quantity
Tuple of integral flux and integral flux error.
- emin, emax :
-
inverse
(value, emin=<Quantity 0.1 TeV>, emax=<Quantity 100. TeV>)¶ Return energy for a given function value of the spectral model.
Calls the
scipy.optimize.brentq
numerical root finding method.Parameters: Returns: - energy :
Quantity
Energies at which the model has the given
value
.
- energy :
-
plot
(energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plot
By default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:
from gammapy.spectrum.models import ExponentialCutoffPowerLaw from astropy import units as u pwl = ExponentialCutoffPowerLaw() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear')
Parameters: Returns: - ax :
Axes
, optional Axis
- ax :
-
plot_error
(energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')
andax.set_xscale("log", nonposx='clip')
to create a log-log representation. The additional argumentnonposx='clip'
avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()
orplt.semilogy()
explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')
orplt.semilogy(nonposy='clip')
.Parameters: - ax :
Axes
, optional Axis
- energy_range :
Quantity
Plot range
- energy_unit : str,
Unit
, optional Unit of the energy axis
- flux_unit : str,
Unit
, optional Unit of the flux axis
- energy_power : int, optional
Power of energy to multiply flux axis with
- n_points : int, optional
Number of evaluation nodes
- **kwargs : dict
Keyword arguments forwarded to
matplotlib.pyplot.fill_between
Returns: - ax :
Axes
, optional Axis
- ax :
-
spectral_index
(energy, epsilon=1e-05)¶ Compute spectral index at given energy.
Parameters: - energy :
Quantity
Energy at which to estimate the index
- epsilon : float
Fractional energy increment to use for determining the spectral index.
Returns: - index : float
Estimated spectral index.
- energy :
-
to_dict
()¶ Convert to dict.
-