Source code for gammapy.time.lightcurve_estimator

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging
from collections import OrderedDict
import numpy as np
from ..utils.fitting import Fit, Datasets
from ..time import LightCurve
from ..spectrum import SpectrumDatasetOnOff, FluxPoints
from ..spectrum.models import ScaleModel
from ..utils.table import table_from_row_data

__all__ = ["LightCurveEstimator"]

log = logging.getLogger(__name__)


[docs]class LightCurveEstimator: """Estimate flux points for a given list of datasets, each per time bin. Parameters ---------- datasets : list of `~gammapy.spectrum.SpectrumDataset` or `~gammapy.cube.MapDataset` Spectrum or Map datasets. source : str For which source in the model to compute the flux points. Default is '' norm_min : float Minimum value for the norm used for the likelihood profile evaluation. norm_max : float Maximum value for the norm used for the likelihood profile evaluation. norm_n_values : int Number of norm values used for the likelihood profile. norm_values : `numpy.ndarray` Array of norm values to be used for the likelihood profile. sigma : int Sigma to use for asymmetric error computation. sigma_ul : int Sigma to use for upper limit computation. reoptimize : bool reoptimize other parameters during likelihod scan """ def __init__( self, datasets, source="", norm_min=0.2, norm_max=5, norm_n_values=11, norm_values=None, sigma=1, sigma_ul=2, reoptimize=False, ): if not isinstance(datasets, Datasets): datasets = Datasets(datasets) self.datasets = datasets if not datasets.is_all_same_type and datasets.is_all_same_shape: raise ValueError( "Light Curve estimation requires a list of datasets" " of the same type and data shape." ) dataset = self.datasets.datasets[0] if isinstance(dataset, SpectrumDatasetOnOff): model = dataset.model else: model = dataset.model[source].spectral_model self.model = ScaleModel(model) self.model.norm.min = 0 self.model.norm.max = 1e5 if norm_values is None: norm_values = np.logspace( np.log10(norm_min), np.log10(norm_max), norm_n_values ) self.norm_values = norm_values self.sigma = sigma self.sigma_ul = sigma_ul self.reoptimize = reoptimize self.source = source self._set_scale_model() def _set_scale_model(self): # set the model on all datasets for dataset in self.datasets.datasets: if isinstance(dataset, SpectrumDatasetOnOff): dataset.model = self.model else: dataset.model[self.source].spectral_model = self.model @property def ref_model(self): return self.model.model
[docs] def run(self, e_ref, e_min, e_max, steps="all"): """Run light curve extraction. Normalize integral and energy flux between emin and emax. Parameters ---------- e_ref : `~astropy.unit.Quantity` reference energy of dnde flux normalization e_min : `~astropy.unit.Quantity` minimum energy of integral and energy flux normalization interval e_max : `~astropy.unit.Quantity` minimum energy of integral and energy flux normalization interval steps : list of str Which steps to execute. Available options are: * "err": estimate symmetric error. * "errn-errp": estimate asymmetric errors. * "ul": estimate upper limits. * "ts": estimate ts and sqrt(ts) values. * "norm-scan": estimate likelihood profiles. By default all steps are executed. Returns ------- lightcurve : `~gammapy.time.LightCurve` the Light Curve object """ self.e_ref = e_ref self.e_min = e_min self.e_max = e_max rows = [] for dataset in self.datasets.datasets: row = { "time_min": dataset.counts.meta["t_start"].mjd, "time_max": dataset.counts.meta["t_stop"].mjd, } row.update(self.estimate_time_bin_flux(dataset, steps)) rows.append(row) meta = OrderedDict([("SED_TYPE", "likelihood")]) table = table_from_row_data(rows=rows, meta=meta) table = FluxPoints(table).to_sed_type("flux").table return LightCurve(table)
[docs] def estimate_time_bin_flux(self, dataset, steps="all"): """Estimate flux point for a single energy group. Parameters ---------- steps : list of str Which steps to execute. Available options are: * "err": estimate symmetric error. * "errn-errp": estimate asymmetric errors. * "ul": estimate upper limits. * "ts": estimate ts and sqrt(ts) values. * "norm-scan": estimate likelihood profiles. By default all steps are executed. Returns ------- result : dict Dict with results for the flux point. """ self.fit = Fit(dataset) result = OrderedDict( [ ("e_ref", self.e_ref), ("e_min", self.e_min), ("e_max", self.e_max), ("ref_dnde", self.ref_model(self.e_ref)), ("ref_flux", self.ref_model.integral(self.e_min, self.e_max)), ("ref_eflux", self.ref_model.energy_flux(self.e_min, self.e_max)), ("ref_e2dnde", self.ref_model(self.e_ref) * self.e_ref ** 2), ] ) result.update(self.estimate_norm()) if not result.pop("success"): log.warning( "Fit failed for time bin between {t_min} and {t_max}," " setting NaN.".format( t_min=dataset.counts.meta["t_start"], t_max=dataset.counts.meta["t_stop"], ) ) if steps == "all": steps = ["err", "counts", "errp-errn", "ul", "ts", "norm-scan"] if "err" in steps: result.update(self.estimate_norm_err()) if "counts" in steps: result.update(self.estimate_counts(dataset)) if "errp-errn" in steps: result.update(self.estimate_norm_errn_errp()) if "ul" in steps: result.update(self.estimate_norm_ul(dataset)) if "ts" in steps: result.update(self.estimate_norm_ts()) if "norm-scan" in steps: result.update(self.estimate_norm_scan()) return result
# TODO : most of the following code is copied from FluxPointsEstimator, can it be restructured?
[docs] def estimate_norm_errn_errp(self): """Estimate asymmetric errors for a flux point. Returns ------- result : dict Dict with asymmetric errors for the flux point norm. """ result = self.fit.confidence(parameter=self.model.norm, sigma=self.sigma) return {"norm_errp": result["errp"], "norm_errn": result["errn"]}
[docs] def estimate_norm_err(self): """Estimate covariance errors for a flux point. Returns ------- result : dict Dict with symmetric error for the flux point norm. """ result = self.fit.covariance() norm_err = result.parameters.error(self.model.norm) return {"norm_err": norm_err}
[docs] def estimate_counts(self, dataset): """Estimate counts for the flux point. Parameters ---------- dataset : `~gammapy.utils.fitting.Dataset` the dataset object Returns ------- result : dict Dict with an array with one entry per dataset with counts for the flux point. """ # TODO : use e_min and e_max interval for counts calculation # TODO : add off counts and excess? for DatasetOnOff # TODO : this may require a loop once we support Datasets per time bin mask = dataset.mask if dataset.mask_safe is not None: mask &= dataset.mask_safe counts = dataset.counts.data[mask].sum() return {"counts": counts}
[docs] def estimate_norm_ul(self, dataset): """Estimate upper limit for a flux point. Returns ------- result : dict Dict with upper limit for the flux point norm. """ norm = self.model.norm # TODO: the minuit backend has convergence problems when the likelihood is not # of parabolic shape, which is the case, when there are zero counts in the # bin. For this case we change to the scipy backend. counts = self.estimate_counts(dataset)["counts"] if np.all(counts == 0): result = self.fit.confidence( parameter=norm, sigma=self.sigma_ul, backend="scipy", reoptimize=self.reoptimize, ) else: result = self.fit.confidence(parameter=norm, sigma=self.sigma_ul) return {"norm_ul": result["errp"] + norm.value}
[docs] def estimate_norm_ts(self): """Estimate ts and sqrt(ts) for the flux point. Returns ------- result : dict Dict with ts and sqrt(ts) for the flux point. """ loglike = self.datasets.likelihood() # store best fit amplitude, set amplitude of fit model to zero self.model.norm.value = 0 self.model.norm.frozen = True if self.reoptimize: _ = self.fit.optimize() loglike_null = self.datasets.likelihood() # compute sqrt TS ts = np.abs(loglike_null - loglike) sqrt_ts = np.sqrt(ts) return {"sqrt_ts": sqrt_ts, "ts": ts}
[docs] def estimate_norm_scan(self): """Estimate likelihood profile for the norm parameter. Returns ------- result : dict Dict with norm_scan and dloglike_scan for the flux point. """ result = self.fit.likelihood_profile( self.model.norm, values=self.norm_values, reoptimize=self.reoptimize ) dloglike_scan = result["likelihood"] return {"norm_scan": result["values"], "dloglike_scan": dloglike_scan}
[docs] def estimate_norm(self): """Fit norm of the flux point. Returns ------- result : dict Dict with "norm" and "loglike" for the flux point. """ # start optimization with norm=1 self.model.norm.value = 1.0 self.model.norm.frozen = False result = self.fit.optimize() if result.success: norm = self.model.norm.value else: norm = np.nan return {"norm": norm, "loglike": result.total_stat, "success": result.success}