BackgroundModel

class gammapy.cube.models.BackgroundModel(background, norm=1, tilt=0, reference='1 TeV', name='background', filename=None, obs_id=None)[source]

Bases: gammapy.utils.fitting.Model

Background model.

Create a new map by a tilt and normalisation on the available map

Parameters:
background : Map

Background model map

norm : float

Background normalisation

tilt : float

Additional tilt in the spectrum

reference : Quantity

Reference energy of the tilt.

Attributes Summary

energy_center True energy axis bin centers (Quantity)
filename
map
name
norm
obs_id
parameters Parameters (Parameters)
reference
tilt

Methods Summary

copy(self) A deep copy.
evaluate(self) Evaluate background model.
from_skymodel(skymodel, exposure[, edisp, psf]) Create background model from sky model by applying IRFs.
to_dict(self[, selection])

Attributes Documentation

energy_center

True energy axis bin centers (Quantity)

filename
map
name
norm
obs_id
parameters

Parameters (Parameters)

reference
tilt

Methods Documentation

copy(self)

A deep copy.

evaluate(self)[source]

Evaluate background model.

Returns:
background_map : Map

Background evaluated on the Map

classmethod from_skymodel(skymodel, exposure, edisp=None, psf=None, **kwargs)[source]

Create background model from sky model by applying IRFs.

Typically used for diffuse Galactic or constant emission models.

Parameters:
skymodel : SkyModel or SkyDiffuseCube

Sky model

exposure : Map

Exposure map

edisp : EnergyDispersion

Energy dispersion

psf : PSFKernel

PSF kernel

to_dict(self, selection='all')