LogParabola¶
-
class
gammapy.spectrum.models.
LogParabola
(amplitude='1e-12 cm-2 s-1 TeV-1', reference='10 TeV', alpha=2, beta=1)[source]¶ Bases:
gammapy.spectrum.models.SpectralModel
Spectral log parabola model.
ϕ(E)=ϕ0(EE0)−α−βlog(EE0)Note that log refers to the natural logarithm. This is consistent with the Fermi Science Tools and ctools. The Sherpa package, however, uses log10. If you have parametrization based on log10 you can use the
from_log10()
method.Parameters: Examples
This is how to plot the default
LogParabola
model:from astropy import units as u from gammapy.spectrum.models import LogParabola log_parabola = LogParabola() log_parabola.plot(energy_range=[0.1, 100] * u.TeV) plt.show()
Attributes Summary
alpha
amplitude
beta
e_peak
Spectral energy distribution peak energy ( Quantity
).parameters
Parameters ( Parameters
)reference
Methods Summary
__call__
(self, energy)Call self as a function. copy
(self)A deep copy. energy_flux
(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range. energy_flux_error
(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range with error propagation. evaluate
(energy, amplitude, reference, …)Evaluate the model (static function). evaluate_error
(self, energy)Evaluate spectral model with error propagation. from_dict
(data)Create from dict. from_log10
(amplitude, reference, alpha, beta)Construct from log10 parametrization. integral
(self, emin, emax, \*\*kwargs)Integrate spectral model numerically. integral_error
(self, emin, emax, \*\*kwargs)Integrate spectral model numerically with error propagation. inverse
(self, value[, emin, emax])Return energy for a given function value of the spectral model. plot
(self, energy_range[, ax, energy_unit, …])Plot spectral model curve. plot_error
(self, energy_range[, ax, …])Plot spectral model error band. spectral_index
(self, energy[, epsilon])Compute spectral index at given energy. to_dict
(self[, selection])Attributes Documentation
-
alpha
¶
-
amplitude
¶
-
beta
¶
-
e_peak
¶ Spectral energy distribution peak energy (
Quantity
).This is the peak in E^2 x dN/dE and is given by:
EPeak=E0exp(2−α)/(2∗β)
-
parameters
¶ Parameters (
Parameters
)
-
reference
¶
Methods Documentation
-
__call__
(self, energy)¶ Call self as a function.
-
copy
(self)¶ A deep copy.
-
energy_flux
(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range.
G(Emin,Emax)=∫EmaxEminEϕ(E)dEParameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
- emin, emax :
-
energy_flux_error
(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range with error propagation.
G(Emin,Emax)=∫EmaxEminEϕ(E)dEParameters: - emin, emax :
Quantity
Lower bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
Returns: - energy_flux, energy_flux_error : tuple of
Quantity
Tuple of energy flux and energy flux error.
- emin, emax :
-
static
evaluate
(energy, amplitude, reference, alpha, beta)[source]¶ Evaluate the model (static function).
-
evaluate_error
(self, energy)¶ Evaluate spectral model with error propagation.
Parameters: - energy :
Quantity
Energy at which to evaluate
Returns: - flux, flux_error : tuple of
Quantity
Tuple of flux and flux error.
- energy :
-
classmethod
from_dict
(data)¶ Create from dict.
-
classmethod
from_log10
(amplitude, reference, alpha, beta)[source]¶ Construct from log10 parametrization.
-
integral
(self, emin, emax, **kwargs)¶ Integrate spectral model numerically.
F(Emin,Emax)=∫EmaxEminϕ(E)dEIf array input for
emin
andemax
is given you have to setintervals=True
if you want the integral in each energy bin.Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
- emin, emax :
-
integral_error
(self, emin, emax, **kwargs)¶ Integrate spectral model numerically with error propagation.
Parameters: - emin, emax :
Quantity
Lower adn upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
Returns: - integral, integral_error : tuple of
Quantity
Tuple of integral flux and integral flux error.
- emin, emax :
-
inverse
(self, value, emin=<Quantity 0.1 TeV>, emax=<Quantity 100. TeV>)¶ Return energy for a given function value of the spectral model.
Calls the
scipy.optimize.brentq
numerical root finding method.Parameters: Returns: - energy :
Quantity
Energies at which the model has the given
value
.
- energy :
-
plot
(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plot
By default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:
from gammapy.spectrum.models import ExponentialCutoffPowerLaw from astropy import units as u pwl = ExponentialCutoffPowerLaw() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear')
Parameters: Returns: - ax :
Axes
, optional Axis
- ax :
-
plot_error
(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')
andax.set_xscale("log", nonposx='clip')
to create a log-log representation. The additional argumentnonposx='clip'
avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()
orplt.semilogy()
explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')
orplt.semilogy(nonposy='clip')
.Parameters: - ax :
Axes
, optional Axis
- energy_range :
Quantity
Plot range
- energy_unit : str,
Unit
, optional Unit of the energy axis
- flux_unit : str,
Unit
, optional Unit of the flux axis
- energy_power : int, optional
Power of energy to multiply flux axis with
- n_points : int, optional
Number of evaluation nodes
- **kwargs : dict
Keyword arguments forwarded to
matplotlib.pyplot.fill_between
Returns: - ax :
Axes
, optional Axis
- ax :
-
spectral_index
(self, energy, epsilon=1e-05)¶ Compute spectral index at given energy.
Parameters: - energy :
Quantity
Energy at which to estimate the index
- epsilon : float
Fractional energy increment to use for determining the spectral index.
Returns: - index : float
Estimated spectral index.
- energy :
-
to_dict
(self, selection='all')¶
-