NaimaModel¶
-
class
gammapy.spectrum.models.
NaimaModel
(radiative_model, distance=<Quantity 1. kpc>, seed=None)[source]¶ Bases:
gammapy.spectrum.models.SpectralModel
A wrapper for Naima models.
This class provides an interface with the models defined in the
models
module. The model accepts as a positional argument a Naima radiative model instance, used to compute the non-thermal emission from populations of relativistic electrons or protons due to interactions with the ISM or with radiation and magnetic fields.One of the advantages provided by this class consists in the possibility of performing a maximum likelihood spectral fit of the model’s parameters directly on observations, as opposed to the MCMC fit to flux points featured in Naima. All the parameters defining the parent population of charged particles are stored as
Parameter
and left free by default. In case that the radiative model is ` ~naima.radiative.Synchrotron`, the magnetic field strength may also be fitted. Parameters can be freezed/unfreezed before the fit, and maximum/minimum values can be set to limit the parameters space to the physically interesting region.Parameters: - radiative_model :
BaseRadiative
An instance of a radiative model defined in
models
- distance :
Quantity
, optional Distance to the source. If set to 0, the intrinsic differential luminosity will be returned. Default is 1 kpc
- seed : str or list of str, optional
Seed photon field(s) to be considered for the
radiative_model
flux computation, in case of aInverseCompton
model. It can be a subset of theseed_photon_fields
list defining theradiative_model
. Default is the whole list of photon fields
Examples
Create and plot a spectral model that convolves an
ExponentialCutoffPowerLaw
electron distribution with anInverseCompton
radiative model, in the presence of multiple seed photon fields.import naima from gammapy.spectrum.models import NaimaModel import astropy.units as u import matplotlib.pyplot as plt particle_distribution = naima.models.ExponentialCutoffPowerLaw(1e30 / u.eV, 10 * u.TeV, 3.0, 30 * u.TeV) radiative_model = naima.radiative.InverseCompton( particle_distribution, seed_photon_fields=[ "CMB", ["FIR", 26.5 * u.K, 0.415 * u.eV / u.cm ** 3], ], Eemin=100 * u.GeV, ) model = NaimaModel(radiative_model, distance=1.5 * u.kpc) opts = { "energy_range" : [10 * u.GeV, 80 * u.TeV], "energy_power" : 2, "flux_unit" : "erg-1 cm-2 s-1", } # Plot the total inverse Compton emission model.plot(label='IC (total)', **opts) # Plot the separate contributions from each seed photon field for seed, ls in zip(['CMB','FIR'], ['-','--']): model = NaimaModel(radiative_model, seed=seed, distance=1.5 * u.kpc) model.plot(label="IC ({})".format(seed), ls=ls, color="gray", **opts) plt.legend(loc='best') plt.show()
Attributes Summary
parameters
Parameters ( Parameters
)Methods Summary
__call__
(self, energy)Call self as a function. copy
(self)A deep copy. energy_flux
(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range. energy_flux_error
(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range with error propagation. evaluate
(self, energy, \*\*kwargs)Evaluate the model. evaluate_error
(self, energy)Evaluate spectral model with error propagation. from_dict
(data)Create from dict. integral
(self, emin, emax, \*\*kwargs)Integrate spectral model numerically. integral_error
(self, emin, emax, \*\*kwargs)Integrate spectral model numerically with error propagation. inverse
(self, value[, emin, emax])Return energy for a given function value of the spectral model. plot
(self, energy_range[, ax, energy_unit, …])Plot spectral model curve. plot_error
(self, energy_range[, ax, …])Plot spectral model error band. spectral_index
(self, energy[, epsilon])Compute spectral index at given energy. to_dict
(self[, selection])Attributes Documentation
-
parameters
¶ Parameters (
Parameters
)
Methods Documentation
-
__call__
(self, energy)¶ Call self as a function.
-
copy
(self)¶ A deep copy.
-
energy_flux
(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
- emin, emax :
-
energy_flux_error
(self, emin, emax, **kwargs)¶ Compute energy flux in given energy range with error propagation.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE\]Parameters: - emin, emax :
Quantity
Lower bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
Returns: - energy_flux, energy_flux_error : tuple of
Quantity
Tuple of energy flux and energy flux error.
- emin, emax :
-
evaluate_error
(self, energy)[source]¶ Evaluate spectral model with error propagation.
Parameters: - energy :
Quantity
Energy at which to evaluate
Returns: - flux, flux_error : tuple of
Quantity
Tuple of flux and flux error.
- energy :
-
classmethod
from_dict
(data)¶ Create from dict.
-
integral
(self, emin, emax, **kwargs)¶ Integrate spectral model numerically.
\[F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE\]If array input for
emin
andemax
is given you have to setintervals=True
if you want the integral in each energy bin.Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to
integrate_spectrum()
- emin, emax :
-
integral_error
(self, emin, emax, **kwargs)¶ Integrate spectral model numerically with error propagation.
Parameters: - emin, emax :
Quantity
Lower adn upper bound of integration range.
- **kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
Returns: - integral, integral_error : tuple of
Quantity
Tuple of integral flux and integral flux error.
- emin, emax :
-
inverse
(self, value, emin=<Quantity 0.1 TeV>, emax=<Quantity 100. TeV>)¶ Return energy for a given function value of the spectral model.
Calls the
scipy.optimize.brentq
numerical root finding method.Parameters: Returns: - energy :
Quantity
Energies at which the model has the given
value
.
- energy :
-
plot
(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plot
By default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:
from gammapy.spectrum.models import ExponentialCutoffPowerLaw from astropy import units as u pwl = ExponentialCutoffPowerLaw() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear')
Parameters: Returns: - ax :
Axes
, optional Axis
- ax :
-
plot_error
(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')
andax.set_xscale("log", nonposx='clip')
to create a log-log representation. The additional argumentnonposx='clip'
avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()
orplt.semilogy()
explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')
orplt.semilogy(nonposy='clip')
.Parameters: - ax :
Axes
, optional Axis
- energy_range :
Quantity
Plot range
- energy_unit : str,
Unit
, optional Unit of the energy axis
- flux_unit : str,
Unit
, optional Unit of the flux axis
- energy_power : int, optional
Power of energy to multiply flux axis with
- n_points : int, optional
Number of evaluation nodes
- **kwargs : dict
Keyword arguments forwarded to
matplotlib.pyplot.fill_between
Returns: - ax :
Axes
, optional Axis
- ax :
-
spectral_index
(self, energy, epsilon=1e-05)¶ Compute spectral index at given energy.
Parameters: - energy :
Quantity
Energy at which to estimate the index
- epsilon : float
Fractional energy increment to use for determining the spectral index.
Returns: - index : float
Estimated spectral index.
- energy :
-
to_dict
(self, selection='all')¶
- radiative_model :