PowerLaw¶
-
class
gammapy.spectrum.models.
PowerLaw
(index=2.0, amplitude='1e-12 cm-2 s-1 TeV-1', reference='1 TeV')[source]¶ Bases:
gammapy.spectrum.models.SpectralModel
Spectral power-law model.
\[\phi(E) = \phi_0 \cdot \left( \frac{E}{E_0} \right)^{-\Gamma}\]Parameters: Examples
This is how to plot the default
PowerLaw
model:from astropy import units as u from gammapy.spectrum.models import PowerLaw pwl = PowerLaw() pwl.plot(energy_range=[0.1, 100] * u.TeV) plt.show()
Attributes Summary
amplitude
index
parameters
Parameters ( Parameters
)pivot_energy
The decorrelation energy is defined as: reference
Methods Summary
__call__
(self, energy)Call self as a function. copy
(self)A deep copy. energy_flux
(self, emin, emax)Compute energy flux in given energy range analytically. energy_flux_error
(self, emin, emax, \*\*kwargs)Compute energy flux in given energy range analytically with error propagation. evaluate
(energy, index, amplitude, reference)Evaluate the model (static function). evaluate_energy_flux
(emin, emax, index, …)Evaluate the energy flux (static function) evaluate_error
(self, energy)Evaluate spectral model with error propagation. evaluate_integral
(emin, emax, index, …)Evaluate the model integral (static function). from_dict
(data)Create from dict. integral
(self, emin, emax, \*\*kwargs)Integrate power law analytically. integral_error
(self, emin, emax, \*\*kwargs)Integrate power law analytically with error propagation. inverse
(self, value)Return energy for a given function value of the spectral model. plot
(self, energy_range[, ax, energy_unit, …])Plot spectral model curve. plot_error
(self, energy_range[, ax, …])Plot spectral model error band. spectral_index
(self, energy[, epsilon])Compute spectral index at given energy. to_dict
(self[, selection])Attributes Documentation
-
amplitude
¶
-
index
¶
-
parameters
¶ Parameters (
Parameters
)
-
pivot_energy
¶ The decorrelation energy is defined as:
\[E_D = E_0 * \exp{cov(\phi_0, \Gamma) / (\phi_0 \Delta \Gamma^2)}\]Formula (1) in https://arxiv.org/pdf/0910.4881.pdf
-
reference
¶
Methods Documentation
-
__call__
(self, energy)¶ Call self as a function.
-
copy
(self)¶ A deep copy.
-
energy_flux
(self, emin, emax)[source]¶ Compute energy flux in given energy range analytically.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}E \phi(E)dE = \left. \phi_0 \frac{E_0^2}{-\Gamma + 2} \left( \frac{E}{E_0} \right)^{-\Gamma + 2} \right \vert _{E_{min}}^{E_{max}}\]Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
- emin, emax :
-
energy_flux_error
(self, emin, emax, **kwargs)[source]¶ Compute energy flux in given energy range analytically with error propagation.
Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
Returns: - energy_flux, energy_flux_error : tuple of
Quantity
Tuple of energy flux and energy flux error.
- emin, emax :
-
static
evaluate_energy_flux
(emin, emax, index, amplitude, reference)[source]¶ Evaluate the energy flux (static function)
-
evaluate_error
(self, energy)¶ Evaluate spectral model with error propagation.
Parameters: - energy :
Quantity
Energy at which to evaluate
Returns: - flux, flux_error : tuple of
Quantity
Tuple of flux and flux error.
- energy :
-
static
evaluate_integral
(emin, emax, index, amplitude, reference)[source]¶ Evaluate the model integral (static function).
-
classmethod
from_dict
(data)¶ Create from dict.
-
integral
(self, emin, emax, **kwargs)[source]¶ Integrate power law analytically.
\[F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}\phi(E)dE = \left. \phi_0 \frac{E_0}{-\Gamma + 1} \left( \frac{E}{E_0} \right)^{-\Gamma + 1} \right \vert _{E_{min}}^{E_{max}}\]Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range
- emin, emax :
-
integral_error
(self, emin, emax, **kwargs)[source]¶ Integrate power law analytically with error propagation.
Parameters: - emin, emax :
Quantity
Lower and upper bound of integration range.
Returns: - integral, integral_error : tuple of
Quantity
Tuple of integral flux and integral flux error.
- emin, emax :
-
inverse
(self, value)[source]¶ Return energy for a given function value of the spectral model.
Parameters: - value :
Quantity
Function value of the spectral model.
- value :
-
plot
(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plot
By default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:
from gammapy.spectrum.models import ExponentialCutoffPowerLaw from astropy import units as u pwl = ExponentialCutoffPowerLaw() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear')
Parameters: Returns: - ax :
Axes
, optional Axis
- ax :
-
plot_error
(self, energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')
andax.set_xscale("log", nonposx='clip')
to create a log-log representation. The additional argumentnonposx='clip'
avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()
orplt.semilogy()
explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')
orplt.semilogy(nonposy='clip')
.Parameters: - ax :
Axes
, optional Axis
- energy_range :
Quantity
Plot range
- energy_unit : str,
Unit
, optional Unit of the energy axis
- flux_unit : str,
Unit
, optional Unit of the flux axis
- energy_power : int, optional
Power of energy to multiply flux axis with
- n_points : int, optional
Number of evaluation nodes
- **kwargs : dict
Keyword arguments forwarded to
matplotlib.pyplot.fill_between
Returns: - ax :
Axes
, optional Axis
- ax :
-
spectral_index
(self, energy, epsilon=1e-05)¶ Compute spectral index at given energy.
Parameters: - energy :
Quantity
Energy at which to estimate the index
- epsilon : float
Fractional energy increment to use for determining the spectral index.
Returns: - index : float
Estimated spectral index.
- energy :
-
to_dict
(self, selection='all')¶
-