Source code for gammapy.datasets.spectrum

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging
from pathlib import Path
import numpy as np
from astropy import units as u
from astropy.io import fits
from astropy.table import Table
from gammapy.data import GTI
from gammapy.irf import EDispKernel, EDispKernelMap
from gammapy.maps import RegionNDMap
from gammapy.stats import WStatCountsStatistic, cash, get_wstat_mu_bkg, wstat
from gammapy.utils.random import get_random_state
from gammapy.utils.scripts import make_name, make_path
from .map import MapDataset
from .utils import get_axes, get_figure

__all__ = ["SpectrumDatasetOnOff", "SpectrumDataset"]

log = logging.getLogger(__name__)


[docs]class SpectrumDataset(MapDataset): """Spectrum dataset for likelihood fitting. The spectrum dataset bundles reduced counts data, with a spectral model, background model and instrument response function to compute the fit-statistic given the current model and data. Parameters ---------- models : `~gammapy.modeling.models.Models` Fit model counts : `~gammapy.maps.RegionNDMap` Counts spectrum exposure : `~gammapy.maps.RegionNDMap` Effective area edisp : `~gammapy.irf.EDispKernelMap` Energy dispersion kernel. mask_safe : `~gammapy.maps.RegionNDMap` Mask defining the safe data range. mask_fit : `~gammapy.maps.RegionNDMap` Mask to apply to the likelihood for fitting. name : str Dataset name. gti : `~gammapy.data.GTI` GTI of the observation or union of GTI if it is a stacked observation meta_table : `~astropy.table.Table` Table listing informations on observations used to create the dataset. One line per observation for stacked datasets. See Also -------- SpectrumDatasetOnOff, FluxPointsDataset, MapDataset """ stat_type = "cash" tag = "SpectrumDataset" def __init__( self, models=None, counts=None, exposure=None, background=None, edisp=None, mask_safe=None, mask_fit=None, name=None, gti=None, meta_table=None, ): self._name = make_name(name) self._evaluators = {} if mask_fit is not None and mask_fit.dtype != np.dtype("bool"): raise ValueError("mask data must have dtype bool") self.counts = counts self.mask_fit = mask_fit self.exposure = exposure self.edisp = edisp self.background = background self.mask_safe = mask_safe self.gti = gti self.meta_table = meta_table self.models = models @property def psf(self): return None @property def mask_safe(self): if self._mask_safe is None: data = np.ones(self._geom.data_shape, dtype=bool) self._mask_safe = RegionNDMap.from_geom(self._geom, data=data) return self._mask_safe @mask_safe.setter def mask_safe(self, mask): if mask is None or isinstance(mask, RegionNDMap): self._mask_safe = mask else: raise ValueError(f"Must be `RegionNDMap` and not {type(mask)}")
[docs] def stat_array(self): """Likelihood per bin given the current model parameters""" return cash(n_on=self.counts.data, mu_on=self.npred().data)
[docs] def stat_sum(self): """Total statistic given the current model parameters.""" stat = self.stat_array() if self.mask is not None: stat = stat[self.mask.data] return np.sum(stat, dtype=np.float64)
[docs] def write(self): raise NotImplementedError
[docs] def read(self): raise NotImplementedError
[docs] def to_hdulist(self): raise NotImplementedError
[docs] def from_hdulist(self): raise NotImplementedError
[docs] def from_dict(self): raise NotImplementedError
# TODO: decide what to about these "useless" methods
[docs] def to_spectrum_dataset(self, *args, **kwargs): """Returns self""" return self
[docs] def cutout(self, *args, **kwargs): """Returns self""" return self
[docs] def pad(self, *args, **kwargs): """Returns self""" return self
@property # TODO: make this a method to support different methods? def energy_range(self): """Energy range defined by the safe mask""" energy = self._geom.axes["energy"].edges energy_min, energy_max = energy[:-1], energy[1:] if self.mask_safe is not None: if self.mask_safe.data.any(): energy_min = energy_min[self.mask_safe.data[:, 0, 0]] energy_max = energy_max[self.mask_safe.data[:, 0, 0]] else: return None, None return u.Quantity([energy_min.min(), energy_max.max()])
[docs] def plot_fit( self, ax_spectrum=None, ax_residuals=None, kwargs_spectrum=None, kwargs_residuals=None, ): """Plot spectrum and residuals in two panels. Calls `~SpectrumDataset.plot_excess` and `~SpectrumDataset.plot_residuals`. Parameters ---------- ax_spectrum : `~matplotlib.axes.Axes` Axes to plot spectrum on. ax_residuals : `~matplotlib.axes.Axes` Axes to plot residuals on. kwargs_spectrum : dict Keyword arguments passed to `~SpectrumDataset.plot_excess`. kwargs_residuals : dict Keyword arguments passed to `~SpectrumDataset.plot_residuals`. Returns ------- ax_spectrum, ax_residuals : `~matplotlib.axes.Axes` Spectrum and residuals plots. """ from matplotlib.gridspec import GridSpec gs = GridSpec(7, 1) ax_spectrum, ax_residuals = get_axes( ax_spectrum, ax_residuals, 8, 7, [gs[:5, :]], [gs[5:, :]], kwargs2={"sharex": ax_spectrum}, ) kwargs_spectrum = kwargs_spectrum or {} kwargs_residuals = kwargs_residuals or {} self.plot_excess(ax_spectrum, **kwargs_spectrum) ax_spectrum.label_outer() self.plot_residuals(ax_residuals, **kwargs_residuals) method = kwargs_residuals.get("method", "diff") label = self._residuals_labels[method] ax_residuals.set_ylabel(f"Residuals\n{label}") return ax_spectrum, ax_residuals
@property def _energy_unit(self): return self._geom.axes[0].unit def _plot_energy_range(self, ax): energy_min, energy_max = self.energy_range kwargs = {"color": "black", "linestyle": "dashed"} ax.axvline(energy_min.to_value(self._energy_unit), label="fit range", **kwargs) ax.axvline(energy_max.to_value(self._energy_unit), **kwargs)
[docs] def plot_counts( self, ax=None, kwargs_counts=None, kwargs_background=None, **kwargs ): """Plot counts and background. Parameters ---------- ax : `~matplotlib.axes.Axes` Axes to plot on. kwargs_counts: dict Keyword arguments passed to `~matplotlib.axes.Axes.hist` for the counts. kwargs_background: dict Keyword arguments passed to `~matplotlib.axes.Axes.hist` for the background. **kwargs: dict Keyword arguments passed to both `~matplotlib.axes.Axes.hist`. Returns ------- ax : `~matplotlib.axes.Axes` Axes object. """ kwargs_counts = kwargs_counts or {} kwargs_background = kwargs_background or {} plot_kwargs = kwargs.copy() plot_kwargs.update(kwargs_counts) plot_kwargs.setdefault("label", "Counts") ax = self.counts.plot_hist(ax, **plot_kwargs) plot_kwargs = kwargs.copy() plot_kwargs.update(kwargs_background) plot_kwargs.setdefault("label", "Background") self.background.plot_hist(ax, **plot_kwargs) self._plot_energy_range(ax) energy_min, energy_max = self.energy_range ax.set_xlim(0.7 * energy_min.value, 1.3 * energy_max.value) ax.legend(numpoints=1) return ax
[docs] def plot_excess( self, ax=None, kwargs_excess=None, kwargs_npred_signal=None, **kwargs ): """Plot excess and predicted signal. Parameters ---------- ax : `~matplotlib.axes.Axes` Axes to plot on. kwargs_excess: dict Keyword arguments passed to `~matplotlib.axes.Axes.errorbar` for the excess. kwargs_npred_signal : dict Keyword arguments passed to `~matplotlib.axes.Axes.hist` for the predicted signal. **kwargs: dict Keyword arguments passed to both plot methods. Returns ------- ax : `~matplotlib.axes.Axes` Axes object. """ kwargs_excess = kwargs_excess or {} kwargs_npred_signal = kwargs_npred_signal or {} plot_kwargs = kwargs.copy() plot_kwargs.update(kwargs_excess) plot_kwargs.setdefault("label", "Excess counts") ax = self.excess.plot( ax, yerr=np.sqrt(np.abs(self.excess.data.flatten())), **plot_kwargs ) plot_kwargs = kwargs.copy() plot_kwargs.update(kwargs_npred_signal) plot_kwargs.setdefault("label", "Predicted signal counts") self.npred_signal().plot_hist(ax, **plot_kwargs) self._plot_energy_range(ax) ax.legend(numpoints=1) return ax
[docs] def residuals(self, method="diff"): """Compute the spectral residuals. Parameters ---------- method : {"diff", "diff/model", "diff/sqrt(model)"} Method used to compute the residuals. Available options are: - ``diff`` (default): data - model - ``diff/model``: (data - model) / model - ``diff/sqrt(model)``: (data - model) / sqrt(model) Returns ------- residuals : `RegionNDMap` Residual spectrum """ residuals = self._compute_residuals(self.counts, self.npred(), method) return residuals
[docs] def plot_residuals(self, ax=None, method="diff", **kwargs): """Plot spectrum residuals. Parameters ---------- ax : `~matplotlib.axes.Axes` Axes to plot on. method : {"diff", "diff/model", "diff/sqrt(model)"} Normalization used to compute the residuals, see `SpectrumDataset.residuals`. **kwargs : dict Keyword arguments passed to `~matplotlib.axes.Axes.errorbar`. Returns ------- ax : `~matplotlib.axes.Axes` Axes object. """ # TODO: remove code duplication with `MapDataset.plot_residuals_spectral()` residuals = self.residuals(method) if method == "diff": yerr = np.sqrt((self.counts.data + self.npred().data).flatten()) else: yerr = np.ones_like(residuals.data.flatten()) kwargs.setdefault("color", kwargs.pop("c", "black")) ax = residuals.plot(ax, yerr=yerr, **kwargs) ax.axhline(0, color=kwargs["color"], lw=0.5) label = self._residuals_labels[method] ax.set_ylabel(f"Residuals ({label})") ax.set_yscale("linear") ymin = 1.05 * np.nanmin(residuals.data - yerr) ymax = 1.05 * np.nanmax(residuals.data + yerr) ax.set_ylim(ymin, ymax) return ax
[docs] @classmethod def create( cls, e_reco, e_true=None, region=None, reference_time="2000-01-01", name=None, meta_table=None, ): """Creates empty spectrum dataset. Empty containers are created with the correct geometry. counts, background and aeff are zero and edisp is diagonal. The safe_mask is set to False in every bin. Parameters ---------- e_reco : `~gammapy.maps.MapAxis` counts energy axis. Its name must be "energy". e_true : `~gammapy.maps.MapAxis` effective area table energy axis. Its name must be "energy-true". If not set use reco energy values. Default : None region : `~regions.SkyRegion` Region to define the dataset for. reference_time : `~astropy.time.Time` reference time of the dataset, Default is "2000-01-01" meta_table : `~astropy.table.Table` Table listing informations on observations used to create the dataset. One line per observation for stacked datasets. """ if e_true is None: e_true = e_reco.copy(name="energy_true") if region is None: region = "icrs;circle(0, 0, 1)" name = make_name(name) counts = RegionNDMap.create(region=region, axes=[e_reco]) background = RegionNDMap.create(region=region, axes=[e_reco]) exposure = RegionNDMap.create( region=region, axes=[e_true], unit="cm2 s", meta={"livetime": 0 * u.s} ) edisp = EDispKernelMap.from_diagonal_response(e_reco, e_true, geom=counts.geom) mask_safe = RegionNDMap.from_geom(counts.geom, dtype="bool") gti = GTI.create(u.Quantity([], "s"), u.Quantity([], "s"), reference_time) return SpectrumDataset( counts=counts, exposure=exposure, background=background, edisp=edisp, mask_safe=mask_safe, gti=gti, name=name, )
[docs] def peek(self, fig=None): """Quick-look summary plots. Parameters ---------- fig : `~matplotlib.figure.Figure` Figure to add AxesSubplot on. Returns ------- ax1, ax2, ax3 : `~matplotlib.axes.AxesSubplot` Counts, effective area and energy dispersion subplots. """ fig = get_figure(fig, 16, 4) ax1, ax2, ax3 = fig.subplots(1, 3) ax1.set_title("Counts") self.plot_counts(ax1) ax2.set_title("Exposure") self.exposure.plot(ax2) self._plot_energy_range(ax2) energy_min, energy_max = self.energy_range ax2.set_xlim(0.7 * energy_min.value, 1.3 * energy_max.value) ax3.set_title("Energy Dispersion") if self.edisp is not None: kernel = self.edisp.get_edisp_kernel() kernel.plot_matrix(ax3, vmin=0, vmax=1) # TODO: optimize layout fig.subplots_adjust(wspace=0.3) return ax1, ax2, ax3
[docs]class SpectrumDatasetOnOff(SpectrumDataset): """Spectrum dataset for on-off likelihood fitting. The on-off spectrum dataset bundles reduced counts data, off counts data, with a spectral model, relative background efficiency and instrument response functions to compute the fit-statistic given the current model and data. Parameters ---------- models : `~gammapy.modeling.models.Models` Fit model counts : `~gammapy.maps.RegionNDMap` ON Counts spectrum counts_off : `~gammapy.maps.RegionNDMap` OFF Counts spectrum exposure : `~gammapy.maps.RegionNDMap` Exposure edisp : `~gammapy.irf.EDispKernelMap` Energy dispersion kernel mask_safe : `~gammapy.maps.RegionNDMap` Mask defining the safe data range. mask_fit : `~gammapy.maps.RegionNDMap` Mask to apply to the likelihood for fitting. acceptance : `~gammapy.maps.RegionNDMap` or float Relative background efficiency in the on region. acceptance_off : `~gammapy.maps.RegionNDMap` or float Relative background efficiency in the off region. name : str Name of the dataset. gti : `~gammapy.data.GTI` GTI of the observation or union of GTI if it is a stacked observation meta_table : `~astropy.table.Table` Table listing informations on observations used to create the dataset. One line per observation for stacked datasets. See Also -------- SpectrumDataset, FluxPointsDataset, MapDataset """ stat_type = "wstat" tag = "SpectrumDatasetOnOff" def __init__( self, models=None, counts=None, counts_off=None, exposure=None, edisp=None, mask_safe=None, mask_fit=None, acceptance=None, acceptance_off=None, name=None, gti=None, meta_table=None, ): self._name = make_name(name) self._evaluators = {} self.counts = counts self.counts_off = counts_off self.mask_fit = mask_fit self.exposure = exposure self.edisp = edisp self.mask_safe = mask_safe self.meta_table = meta_table if np.isscalar(acceptance): data = np.ones(self._geom.data_shape) * acceptance acceptance = RegionNDMap.from_geom(self._geom, data=data) self.acceptance = acceptance if np.isscalar(acceptance_off): data = np.ones(self._geom.data_shape) * acceptance_off acceptance_off = RegionNDMap.from_geom(self._geom, data=data) self.acceptance_off = acceptance_off self.gti = gti self.models = models def __str__(self): str_ = super().__str__() str_list = str_.split("\n") if getattr(self, "counts_off", None) is not None: counts_off = np.sum(self.counts_off.data) str_cts = "\t{:32}: {:.2f}".format("Total off counts", counts_off) str_list.insert(6, str_cts) acceptance = np.nan if self.acceptance is not None: acceptance = np.mean(self.acceptance.data) str_acc = "\n\t{:32}: {:.3f}\n".format("Acceptance mean", acceptance) acceptance_off = np.nan if self.acceptance_off is not None: acceptance_off = np.sum(self.acceptance_off.data) str_acc += "\t{:32}: {:.3f}".format("Acceptance off", acceptance_off) str_list.insert(16, str_acc) str_ = "\n".join(str_list) return str_.expandtabs(tabsize=2)
[docs] def npred_background(self): """Background counts estimated from the marginalized likelihood estimate. See :ref:`wstat` """ mu_bkg = self.alpha.data * get_wstat_mu_bkg( n_on=self.counts.data, n_off=self.counts_off.data, alpha=self.alpha.data, mu_sig=self.npred_signal().data, ) return RegionNDMap.from_geom(geom=self._geom, data=mu_bkg)
[docs] def npred_off(self): """Predicted counts in the off region Returns ------- npred_off : `Map` Predicted off counts """ return self.npred_background() / self.alpha
@property def background(self): """ alpha * noff""" return self.alpha * self.counts_off @property def alpha(self): """Exposure ratio between signal and background regions""" alpha = self.acceptance / self.acceptance_off np.nan_to_num(alpha.data, copy=False) return alpha @property def _geom(self): """Main analysis geometry""" if self.counts is not None: return self.counts.geom elif self.counts_off is not None: return self.counts_off.geom elif self.acceptance is not None: return self.acceptance.geom elif self.acceptance_off is not None: return self.acceptance_off.geom else: raise ValueError( "Either 'counts', 'counts_off', 'acceptance' or 'acceptance_of' must be defined." )
[docs] def stat_array(self): """Likelihood per bin given the current model parameters""" mu_sig = self.npred_signal().data on_stat_ = wstat( n_on=self.counts.data, n_off=self.counts_off.data, alpha=self.alpha.data, mu_sig=mu_sig, ) return np.nan_to_num(on_stat_)
[docs] def fake(self, npred_background, random_state="random-seed"): """Simulate fake counts for the current model and reduced irfs. This method overwrites the counts and off counts defined on the dataset object. Parameters ---------- npred_background : `~gammapy.maps.RegionNDMap` Predicted background to be used in the on region. random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`} Defines random number generator initialisation. Passed to `~gammapy.utils.random.get_random_state`. """ random_state = get_random_state(random_state) npred = self.npred_signal() npred.data = random_state.poisson(npred.data) npred_bkg = random_state.poisson(npred_background.data) self.counts = npred + npred_bkg npred_off = npred_background / self.alpha npred_off.data = random_state.poisson(npred_off.data) self.counts_off = npred_off
[docs] @classmethod def create( cls, e_reco, e_true=None, region=None, reference_time="2000-01-01", name=None, meta_table=None, ): """Create empty SpectrumDatasetOnOff. Empty containers are created with the correct geometry. counts, counts_off and aeff are zero and edisp is diagonal. The safe_mask is set to False in every bin. Parameters ---------- e_reco : `~gammapy.maps.MapAxis` counts energy axis. Its name must be "energy". e_true : `~gammapy.maps.MapAxis` effective area table energy axis. Its name must be "energy-true". If not set use reco energy values. Default : None region : `~regions.SkyRegion` Region to define the dataset for. reference_time : `~astropy.time.Time` reference time of the dataset, Default is "2000-01-01" meta_table : `~astropy.table.Table` Table listing informations on observations used to create the dataset. One line per observation for stacked datasets. """ dataset = super().create( e_reco=e_reco, e_true=e_true, region=region, reference_time=reference_time, name=name, ) counts_off = dataset.counts.copy() acceptance = RegionNDMap.from_geom(counts_off.geom, dtype=int) acceptance.data += 1 acceptance_off = RegionNDMap.from_geom(counts_off.geom, dtype=int) acceptance_off.data += 1 return cls.from_spectrum_dataset( dataset=dataset, acceptance=acceptance, acceptance_off=acceptance_off, counts_off=counts_off, )
[docs] @classmethod def read(cls, filename): """Read from file For now, filename is assumed to the name of a PHA file where BKG file, ARF, and RMF names must be set in the PHA header and be present in the same folder Parameters ---------- filename : str OGIP PHA file to read """ raise NotImplementedError( "To read from an OGIP fits file use SpectrumDatasetOnOff.from_ogip_files." )
def _is_stackable(self): """Check if the Dataset contains enough information to be stacked""" if ( self.acceptance_off is None or self.acceptance is None or self.counts_off is None ): return False else: return True
[docs] def stack(self, other): r"""Stack this dataset with another one. Safe mask is applied to compute the stacked counts vector. Counts outside each dataset safe mask are lost. Stacking is performed in-place. The stacking of 2 datasets is implemented as follows. Here, :math:`k` denotes a bin in reconstructed energy and :math:`j = {1,2}` is the dataset number The ``mask_safe`` of each dataset is defined as: .. math:: \epsilon_{jk} =\left\{\begin{array}{cl} 1, & \mbox{if k is inside the energy thresholds}\\ 0, & \mbox{otherwise} \end{array}\right. Then the total ``counts`` and ``counts_off`` are computed according to: .. math:: \overline{\mathrm{n_{on}}}_k = \mathrm{n_{on}}_{1k} \cdot \epsilon_{1k} + \mathrm{n_{on}}_{2k} \cdot \epsilon_{2k} \overline{\mathrm{n_{off}}}_k = \mathrm{n_{off}}_{1k} \cdot \epsilon_{1k} + \mathrm{n_{off}}_{2k} \cdot \epsilon_{2k} The stacked ``safe_mask`` is then: .. math:: \overline{\epsilon_k} = \epsilon_{1k} OR \epsilon_{2k} In each energy bin :math:`k`, the count excess is computed taking into account the ON ``acceptance``, :math:`a_{on}_k` and the OFF one: ``acceptance_off``, :math:`a_{off}_k`. They define the :math:`\alpha_k=a_{on}_k/a_{off}_k` factors such that :math:`n_{ex}_k = n_{on}_k - \alpha_k n_{off}_k`. We define the stacked value of :math:`\overline{{a}_{on}}_k = 1` so that: .. math:: \overline{{a}_{off}}_k = \frac{\overline{\mathrm {n_{off}}}}{\alpha_{1k} \cdot \mathrm{n_{off}}_{1k} \cdot \epsilon_{1k} + \alpha_{2k} \cdot \mathrm{n_{off}}_{2k} \cdot \epsilon_{2k}} The stacking of :math:`j` elements is implemented as follows. :math:`k` and :math:`l` denote a bin in reconstructed and true energy, respectively. .. math:: \epsilon_{jk} =\left\{\begin{array}{cl} 1, & \mbox{if bin k is inside the energy thresholds}\\ 0, & \mbox{otherwise} \end{array}\right. \overline{t} = \sum_{j} t_i \overline{\mathrm{aeff}}_l = \frac{\sum_{j}\mathrm{aeff}_{jl} \cdot t_j}{\overline{t}} \overline{\mathrm{edisp}}_{kl} = \frac{\sum_{j} \mathrm{edisp}_{jkl} \cdot \mathrm{aeff}_{jl} \cdot t_j \cdot \epsilon_{jk}}{\sum_{j} \mathrm{aeff}_{jl} \cdot t_j} Parameters ---------- other : `~gammapy.datasets.SpectrumDatasetOnOff` the dataset to stack to the current one Examples -------- >>> from gammapy.datasets import SpectrumDatasetOnOff >>> obs_ids = [23523, 23526, 23559, 23592] >>> datasets = [] >>> for obs in obs_ids: >>> filename = "$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs{}.fits" >>> ds = SpectrumDatasetOnOff.from_ogip_files(filename.format(obs)) >>> datasets.append(ds) >>> stacked = datasets[0] >>> for ds in datasets[1:]: >>> stacked.stack(ds) >>> print(stacked) """ if not isinstance(other, SpectrumDatasetOnOff): raise TypeError("Incompatible types for SpectrumDatasetOnOff stacking") # We assume here that counts_off, acceptance and acceptance_off are well defined. if not self._is_stackable() or not other._is_stackable(): raise ValueError("Cannot stack incomplete SpectrumDatsetOnOff.") geom = self.counts.geom total_off = RegionNDMap.from_geom(geom) total_alpha = RegionNDMap.from_geom(geom) total_off.stack(self.counts_off, weights=self.mask_safe) total_off.stack(other.counts_off, weights=other.mask_safe) total_alpha.stack(self.alpha * self.counts_off, weights=self.mask_safe) total_alpha.stack(other.alpha * other.counts_off, weights=other.mask_safe) with np.errstate(divide="ignore", invalid="ignore"): acceptance_off = total_off / total_alpha average_alpha = total_alpha.data.sum() / total_off.data.sum() # For the bins where the stacked OFF counts equal 0, the alpha value is performed by weighting on the total # OFF counts of each run is_zero = total_off.data == 0 acceptance_off.data[is_zero] = 1 / average_alpha self.acceptance = RegionNDMap.from_geom(geom) self.acceptance.data += 1 self.acceptance_off = acceptance_off if self.counts_off is not None: self.counts_off *= self.mask_safe self.counts_off.stack(other.counts_off, weights=other.mask_safe) super().stack(other)
[docs] def to_ogip_files(self, outdir=None, use_sherpa=False, overwrite=False): """Write OGIP files. If you want to use the written files with Sherpa you have to set the ``use_sherpa`` flag. Then all files will be written in units 'keV' and 'cm2'. The naming scheme is fixed, with {name} the dataset name: * PHA file is named pha_obs{name}.fits * BKG file is named bkg_obs{name}.fits * ARF file is named arf_obs{name}.fits * RMF file is named rmf_obs{name}.fits Parameters ---------- outdir : `pathlib.Path` output directory, default: pwd use_sherpa : bool, optional Write Sherpa compliant files, default: False overwrite : bool Overwrite existing files? """ # TODO: refactor and reduce amount of code duplication outdir = Path.cwd() if outdir is None else make_path(outdir) outdir.mkdir(exist_ok=True, parents=True) phafile = f"pha_obs{self.name}.fits" bkgfile = phafile.replace("pha", "bkg") arffile = phafile.replace("pha", "arf") rmffile = phafile.replace("pha", "rmf") counts_table = self.counts.to_table() counts_table["QUALITY"] = np.logical_not(self.mask_safe.data[:, 0, 0]) counts_table["BACKSCAL"] = self.acceptance.data[:, 0, 0] counts_table["AREASCAL"] = np.ones(self.acceptance.data.size) meta = self._ogip_meta() meta["respfile"] = rmffile meta["backfile"] = bkgfile meta["ancrfile"] = arffile meta["hduclas2"] = "TOTAL" counts_table.meta = meta name = counts_table.meta["name"] hdu = fits.BinTableHDU(counts_table, name=name) energy_axis = self.counts.geom.axes[0] hdu_format = "ogip-sherpa" if use_sherpa else "ogip" hdulist = fits.HDUList( [fits.PrimaryHDU(), hdu, energy_axis.to_table_hdu(format=hdu_format)] ) if self.gti is not None: hdu = fits.BinTableHDU(self.gti.table, name="GTI") hdulist.append(hdu) if self.counts.geom._region is not None and self.counts.geom.wcs is not None: region_table = self.counts.geom._to_region_table() region_hdu = fits.BinTableHDU(region_table, name="REGION") hdulist.append(region_hdu) hdulist.writeto(str(outdir / phafile), overwrite=overwrite) aeff = self.exposure / self.exposure.meta["livetime"] aeff.write( outdir / arffile, overwrite=overwrite, format=hdu_format, ogip_column="SPECRESP", ) if self.counts_off is not None: counts_off_table = self.counts_off.to_table() counts_off_table["QUALITY"] = np.logical_not(self.mask_safe.data[:, 0, 0]) counts_off_table["BACKSCAL"] = self.acceptance_off.data[:, 0, 0] counts_off_table["AREASCAL"] = np.ones(self.acceptance.data.size) meta = self._ogip_meta() meta["hduclas2"] = "BKG" counts_off_table.meta = meta name = counts_off_table.meta["name"] hdu = fits.BinTableHDU(counts_off_table, name=name) hdulist = fits.HDUList( [fits.PrimaryHDU(), hdu, energy_axis.to_table_hdu(format=hdu_format)] ) if ( self.counts_off.geom._region is not None and self.counts_off.geom.wcs is not None ): region_table = self.counts_off.geom._to_region_table() region_hdu = fits.BinTableHDU(region_table, name="REGION") hdulist.append(region_hdu) hdulist.writeto(str(outdir / bkgfile), overwrite=overwrite) if self.edisp is not None: kernel = self.edisp.get_edisp_kernel() kernel.write(outdir / rmffile, overwrite=overwrite, use_sherpa=use_sherpa)
def _ogip_meta(self): """Meta info for the OGIP data format""" try: livetime = self.exposure.meta["livetime"] except KeyError: raise ValueError( "Storing in ogip format require the livetime " "to be defined in the exposure meta data" ) return { "name": "SPECTRUM", "hduclass": "OGIP", "hduclas1": "SPECTRUM", "corrscal": "", "chantype": "PHA", "detchans": self.counts.geom.axes[0].nbin, "filter": "None", "corrfile": "", "poisserr": True, "hduclas3": "COUNT", "hduclas4": "TYPE:1", "lo_thres": self.energy_range[0].to_value("TeV"), "hi_thres": self.energy_range[1].to_value("TeV"), "exposure": livetime.to_value("s"), "obs_id": self.name, }
[docs] @classmethod def from_ogip_files(cls, filename): """Read `~gammapy.datasets.SpectrumDatasetOnOff` from OGIP files. BKG file, ARF, and RMF must be set in the PHA header and be present in the same folder. The naming scheme is fixed to the following scheme: * PHA file is named ``pha_obs{name}.fits`` * BKG file is named ``bkg_obs{name}.fits`` * ARF file is named ``arf_obs{name}.fits`` * RMF file is named ``rmf_obs{name}.fits`` with ``{name}`` the dataset name. Parameters ---------- filename : str OGIP PHA file to read """ filename = make_path(filename) dirname = filename.parent with fits.open(str(filename), memmap=False) as hdulist: counts = RegionNDMap.from_hdulist(hdulist, format="ogip") acceptance = RegionNDMap.from_hdulist( hdulist, format="ogip", ogip_column="BACKSCAL" ) livetime = counts.meta["EXPOSURE"] * u.s if "GTI" in hdulist: gti = GTI(Table.read(hdulist["GTI"])) else: gti = None mask_safe = RegionNDMap.from_hdulist( hdulist, format="ogip", ogip_column="QUALITY" ) mask_safe.data = np.logical_not(mask_safe.data) phafile = filename.name try: rmffile = phafile.replace("pha", "rmf") kernel = EDispKernel.read(dirname / rmffile) edisp = EDispKernelMap.from_edisp_kernel(kernel, geom=counts.geom) except OSError: # TODO : Add logger and echo warning edisp = None try: bkgfile = phafile.replace("pha", "bkg") with fits.open(str(dirname / bkgfile), memmap=False) as hdulist: counts_off = RegionNDMap.from_hdulist(hdulist, format="ogip") acceptance_off = RegionNDMap.from_hdulist( hdulist, ogip_column="BACKSCAL" ) except OSError: # TODO : Add logger and echo warning counts_off, acceptance_off = None, None arffile = phafile.replace("pha", "arf") aeff = RegionNDMap.read(dirname / arffile, format="ogip-arf") exposure = aeff * livetime exposure.meta["livetime"] = livetime if edisp is not None: edisp.exposure_map.data = exposure.data[:, :, np.newaxis, :] return cls( counts=counts, exposure=exposure, counts_off=counts_off, edisp=edisp, mask_safe=mask_safe, acceptance=acceptance, acceptance_off=acceptance_off, name=str(counts.meta["OBS_ID"]), gti=gti, )
[docs] def info_dict(self, in_safe_data_range=True): """Info dict with summary statistics, summed over energy Parameters ---------- in_safe_data_range : bool Whether to sum only in the safe energy range Returns ------- info_dict : dict Dictionary with summary info. """ info = super().info_dict(in_safe_data_range) if self.mask_safe and in_safe_data_range: mask = self.mask_safe.data.astype(bool) else: mask = slice(None) counts_off = np.nan if self.counts_off is not None: counts_off = self.counts_off.data[mask].sum() info["counts_off"] = counts_off acceptance = 1 if self.acceptance: # TODO: handle energy dependent a_on / a_off acceptance = self.acceptance.data[mask].sum() info["acceptance"] = acceptance acceptance_off = np.nan if self.acceptance_off: acceptance_off = acceptance * counts_off / info["background"] info["acceptance_off"] = acceptance_off alpha = np.nan if self.acceptance_off and self.acceptance: alpha = np.mean(self.alpha.data[mask]) info["alpha"] = alpha info["sqrt_ts"] = WStatCountsStatistic( info["counts"], info["counts_off"], acceptance / acceptance_off, ).sqrt_ts info["stat_sum"] = self.stat_sum() return info
[docs] def to_dict(self, filename, *args, **kwargs): """Convert to dict for YAML serialization.""" outdir = Path(filename).parent filename = str(outdir / f"pha_obs{self.name}.fits") return {"name": self.name, "type": self.tag, "filename": filename}
[docs] def write(self, filename, overwrite): """Write spectrum dataset on off to file. Currently only the OGIP format is supported Parameters ---------- filename : str Filename to write to. overwrite : bool Overwrite existing file. """ outdir = Path(filename).parent self.to_ogip_files(outdir=outdir, overwrite=overwrite)
[docs] @classmethod def from_dict(cls, data, **kwargs): """Create flux point dataset from dict. Parameters ---------- data : dict Dict containing data to create dataset from. Returns ------- dataset : `SpectrumDatasetOnOff` Spectrum dataset on off. """ filename = make_path(data["filename"]) dataset = cls.from_ogip_files(filename=filename) dataset.mask_fit = None return dataset
[docs] @classmethod def from_spectrum_dataset( cls, dataset, acceptance, acceptance_off, counts_off=None ): """Create spectrum dataseton off from another dataset. Parameters ---------- dataset : `SpectrumDataset` Spectrum dataset defining counts, edisp, exposure etc. acceptance : `~numpy.array` or float Relative background efficiency in the on region. acceptance_off : `~numpy.array` or float Relative background efficiency in the off region. counts_off : `~gammapy.maps.RegionNDMap` Off counts spectrum . If the dataset provides a background model, and no off counts are defined. The off counts are deferred from counts_off / alpha. Returns ------- dataset : `SpectrumDatasetOnOff` Spectrum dataset on off. """ if counts_off is None and dataset.background is not None: alpha = acceptance / acceptance_off counts_off = dataset.npred_background() / alpha return cls( models=dataset.models, counts=dataset.counts, exposure=dataset.exposure, counts_off=counts_off, edisp=dataset.edisp, mask_safe=dataset.mask_safe, mask_fit=dataset.mask_fit, acceptance=acceptance, acceptance_off=acceptance_off, gti=dataset.gti, name=dataset.name, meta_table=dataset.meta_table, )
[docs] def to_spectrum_dataset(self, name=None): """ Convert a SpectrumDatasetOnOff to a SpectrumDataset The background model template is taken as alpha*counts_off Parameters ---------- name: str Name of the new dataset Returns ------- dataset: `SpectrumDataset` SpectrumDatset with cash statistics """ name = make_name(name) return SpectrumDataset( counts=self.counts, exposure=self.exposure, edisp=self.edisp, name=name, gti=self.gti, mask_fit=self.mask_fit, mask_safe=self.mask_safe, meta_table=self.meta_table, background=self.background, )
[docs] def slice_by_idx(self, slices, name=None): """Slice sub dataset. The slicing only applies to the maps that define the corresponding axes. Parameters ---------- slices : dict Dict of axes names and integers or `slice` object pairs. Contains one element for each non-spatial dimension. For integer indexing the corresponding axes is dropped from the map. Axes not specified in the dict are kept unchanged. name : str Name of the sliced dataset. Returns ------- map_out : `Map` Sliced map object. """ name = make_name(name) kwargs = {"gti": self.gti, "name": name} if self.counts is not None: kwargs["counts"] = self.counts.slice_by_idx(slices=slices) if self.exposure is not None: kwargs["exposure"] = self.exposure.slice_by_idx(slices=slices) if self.edisp is not None: kwargs["edisp"] = self.edisp.slice_by_idx(slices=slices) if self.mask_safe is not None: kwargs["mask_safe"] = self.mask_safe.slice_by_idx(slices=slices) if self.mask_fit is not None: kwargs["mask_fit"] = self.mask_fit.slice_by_idx(slices=slices) kwargs["acceptance"] = self.acceptance.slice_by_idx(slices=slices) kwargs["acceptance_off"] = self.acceptance_off.slice_by_idx(slices=slices) kwargs["counts_off"] = self.counts_off.slice_by_idx(slices=slices) return self.__class__(**kwargs)
[docs] def resample_energy_axis(self, energy_axis, name=None): """Resample SpectrumDatasetOnOff over new reconstructed energy axis. Counts are summed taking into account safe mask. Parameters ---------- energy_axis : `~gammapy.maps.MapAxis` New reconstructed energy axis name: str Name of the new dataset. Returns ------- dataset: `SpectrumDataset` Resampled spectrum dataset . """ dataset = super().resample_energy_axis(energy_axis=energy_axis, name=name) axis = dataset.counts.geom.axes["energy"] counts_off = None if self.counts_off is not None: counts_off = self.counts_off counts_off = counts_off.resample_axis(axis=axis, weights=self.mask_safe) acceptance = 1 acceptance_off = None if self.acceptance is not None: acceptance = self.acceptance acceptance = acceptance.resample_axis(axis=axis, weights=self.mask_safe) background = self.alpha * self.counts_off background = background.resample_axis(axis=axis, weights=self.mask_safe) acceptance_off = acceptance * counts_off / background return self.__class__.from_spectrum_dataset( dataset, acceptance=acceptance, acceptance_off=acceptance_off, counts_off=counts_off, )