Source code for gammapy.irf.psf_map

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
import astropy.units as u
from gammapy.maps import Map, MapCoord, WcsGeom
from gammapy.modeling.models import PowerLawSpectralModel
from gammapy.utils.random import InverseCDFSampler, get_random_state
from .irf_map import IRFMap
from .psf_kernel import PSFKernel
from .psf_table import EnergyDependentTablePSF, TablePSF

__all__ = ["PSFMap"]


[docs]class PSFMap(IRFMap): """Class containing the Map of PSFs and allowing to interact with it. Parameters ---------- psf_map : `~gammapy.maps.Map` the input PSF Map. Should be a Map with 2 non spatial axes. rad and true energy axes should be given in this specific order. exposure_map : `~gammapy.maps.Map` Associated exposure map. Needs to have a consistent map geometry. Examples -------- :: import numpy as np from astropy import units as u from astropy.coordinates import SkyCoord from gammapy.maps import Map, WcsGeom, MapAxis from gammapy.irf import EnergyDependentMultiGaussPSF, EffectiveAreaTable2D from gammapy.makers.utils import make_psf_map, PSFMap, make_map_exposure_true_energy # Define energy axis. Note that the name is fixed. energy_axis = MapAxis.from_edges(np.logspace(-1., 1., 4), unit='TeV', name='energy') # Define rad axis. Again note the axis name rads = np.linspace(0., 0.5, 100) * u.deg rad_axis = MapAxis.from_edges(rads, unit='deg', name='theta') # Define parameters pointing = SkyCoord(0., 0., unit='deg') max_offset = 4 * u.deg # Create WcsGeom geom = WcsGeom.create(binsz=0.25*u.deg, width=10*u.deg, skydir=pointing, axes=[rad_axis, energy_axis]) # Extract EnergyDependentTablePSF from CTA 1DC IRF filename = '$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits' psf = EnergyDependentMultiGaussPSF.read(filename, hdu='POINT SPREAD FUNCTION') psf3d = psf.to_psf3d(rads) aeff2d = EffectiveAreaTable2D.read(filename, hdu='EFFECTIVE AREA') # Create the exposure map exposure_geom = geom.to_image().to_cube([energy_axis]) exposure_map = make_map_exposure_true_energy(pointing, "1 h", aeff2d, exposure_geom) # create the PSFMap for the specified pointing psf_map = make_psf_map(psf3d, pointing, geom, max_offset, exposure_map) # Get an EnergyDependentTablePSF at any position in the image psf_table = psf_map.get_energy_dependent_table_psf(SkyCoord(2., 2.5, unit='deg')) # Write map to disk psf_map.write('psf_map.fits') """ tag = "psf_map" _hdu_name = "psf" @property def psf_map(self): return self._irf_map @psf_map.setter def psf_map(self, value): self._irf_map = value def __init__(self, psf_map, exposure_map=None): if psf_map.geom.axes[1].name != "energy_true": raise ValueError("Incorrect energy axis position in input Map") if psf_map.geom.axes[0].name != "rad": raise ValueError("Incorrect rad axis position in input Map") super().__init__(irf_map=psf_map, exposure_map=exposure_map)
[docs] def get_energy_dependent_table_psf(self, position=None): """Get energy-dependent PSF at a given position. By default the PSF at the center of the map is returned. Parameters ---------- position : `~astropy.coordinates.SkyCoord` the target position. Should be a single coordinates Returns ------- psf_table : `~gammapy.irf.EnergyDependentTablePSF` the table PSF """ if position is None: position = self.psf_map.geom.center_skydir if position.size != 1: raise ValueError( "EnergyDependentTablePSF can be extracted at one single position only." ) energy = self.psf_map.geom.axes["energy_true"].center rad = self.psf_map.geom.axes["rad"].center coords = { "skycoord": position, "energy_true": energy.reshape((-1, 1, 1, 1)), "rad": rad.reshape((1, -1, 1, 1)), } data = self.psf_map.interp_by_coord(coords) psf_values = u.Quantity(data[:, :, 0, 0], unit=self.psf_map.unit, copy=False) if self.exposure_map is not None: coords = { "skycoord": position, "energy_true": energy.reshape((-1, 1, 1)), "rad": 0 * u.deg, } data = self.exposure_map.interp_by_coord(coords).squeeze() exposure = data * self.exposure_map.unit else: exposure = None # Beware. Need to revert rad and energies to follow the TablePSF scheme. return EnergyDependentTablePSF( energy_axis_true=self.psf_map.geom.axes["energy_true"], rad_axis=self.psf_map.geom.axes["rad"], psf_value=psf_values, exposure=exposure, )
[docs] def get_psf_kernel(self, position, geom, max_radius=None, factor=4): """Returns a PSF kernel at the given position. The PSF is returned in the form a WcsNDMap defined by the input Geom. Parameters ---------- position : `~astropy.coordinates.SkyCoord` the target position. Should be a single coordinate geom : `~gammapy.maps.Geom` the target geometry to use max_radius : `~astropy.coordinates.Angle` maximum angular size of the kernel map factor : int oversampling factor to compute the PSF Returns ------- kernel : `~gammapy.irf.PSFKernel` the resulting kernel """ if position is None: position = self.psf_map.geom.center_skydir table_psf = self.get_energy_dependent_table_psf(position) if max_radius is None: max_radius = np.max(table_psf.rad_axis.center) min_radius_geom = np.min(geom.width) / 2.0 max_radius = min(max_radius, min_radius_geom) return PSFKernel.from_table_psf(table_psf, geom, max_radius, factor)
[docs] def containment_radius_map(self, energy, fraction=0.68): """Containment radius map. Parameters ---------- energy : `~astropy.units.Quantity` Scalar energy at which to compute the containment radius fraction : float the containment fraction (range: 0 to 1) Returns ------- containment_radius_map : `~gammapy.maps.Map` Containment radius map """ coords = self.psf_map.geom.to_image().get_coord().skycoord.flatten() m = Map.from_geom(self.psf_map.geom.to_image(), unit="deg") for coord in coords: psf_table = self.get_energy_dependent_table_psf(coord) containment_radius = psf_table.containment_radius(energy, fraction) m.fill_by_coord(coord, containment_radius) return m
[docs] @classmethod def from_geom(cls, geom): """Create psf map from geom. Parameters ---------- geom : `Geom` PSF map geometry. Returns ------- psf_map : `PSFMap` Point spread function map. """ geom_exposure_psf = geom.squash(axis_name="rad") exposure_psf = Map.from_geom(geom_exposure_psf, unit="m2 s") psf_map = Map.from_geom(geom, unit="sr-1") return cls(psf_map, exposure_psf)
[docs] def sample_coord(self, map_coord, random_state=0): """Apply PSF corrections on the coordinates of a set of simulated events. Parameters ---------- map_coord : `~gammapy.maps.MapCoord` object. Sequence of coordinates and energies of sampled events. random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`} Defines random number generator initialisation. Passed to `~gammapy.utils.random.get_random_state`. Returns ------- corr_coord : `~gammapy.maps.MapCoord` object. Sequence of PSF-corrected coordinates of the input map_coord map. """ random_state = get_random_state(random_state) rad_axis = self.psf_map.geom.axes["rad"] coord = { "skycoord": map_coord.skycoord.reshape(-1, 1), "energy_true": map_coord["energy_true"].reshape(-1, 1), "rad": rad_axis.center, } pdf = ( self.psf_map.interp_by_coord(coord) * rad_axis.center.value * rad_axis.bin_width.value ) sample_pdf = InverseCDFSampler(pdf, axis=1, random_state=random_state) pix_coord = sample_pdf.sample_axis() separation = rad_axis.pix_to_coord(pix_coord) position_angle = random_state.uniform(360, size=len(map_coord.lon)) * u.deg event_positions = map_coord.skycoord.directional_offset_by( position_angle=position_angle, separation=separation ) return MapCoord.create( {"skycoord": event_positions, "energy_true": map_coord["energy_true"]} )
[docs] @classmethod def from_energy_dependent_table_psf(cls, table_psf, geom=None): """Create PSF map from table PSF object. Helper function to create an allsky PSF map from table PSF, which does not depend on position. Parameters ---------- table_psf : `EnergyDependentTablePSF` Table PSF Returns ------- psf_map : `PSFMap` Point spread function map. """ if geom is None: geom = WcsGeom.create( npix=(2, 1), proj="CAR", binsz=180, axes=[table_psf.rad_axis, table_psf.energy_axis_true], ) coords = geom.get_coord() # TODO: support broadcasting in .evaluate() data = table_psf._interpolate((coords["energy_true"], coords["rad"])).to_value( "sr-1" ) psf_map = Map.from_geom(geom, data=data, unit="sr-1") geom_exposure = geom.squash(axis_name="rad") data = table_psf.exposure.reshape((-1, 1, 1, 1)) exposure_map = Map.from_geom(geom_exposure, unit="cm2 s") exposure_map.quantity += data return cls(psf_map=psf_map, exposure_map=exposure_map)
[docs] @classmethod def from_gauss(cls, energy_axis_true, rad_axis=None, sigma=0.1 * u.deg): """Create all -sky PSF map from Gaussian width. This is used for testing and examples. The width can be the same for all energies or be an array with one value per energy node. It does not depend on position. Parameters ---------- energy_axis_true : `~gammapy.maps.MapAxis` True energy axis. rad_axis : `~gammapy.maps.MapAxis` Offset angle wrt source position axis. sigma : `~astropy.coordinates.Angle` Gaussian width. Returns ------- psf_map : `PSFMap` Point spread function map. """ from gammapy.datasets.map import RAD_AXIS_DEFAULT if rad_axis is None: rad_axis = RAD_AXIS_DEFAULT.copy() # note: it would be straightforward to also have disk shape instead # of gauss energy = energy_axis_true.center rad = rad_axis.center tableshape = (energy.shape[0], rad.shape[0]) if np.size(sigma) == 1: # same width for all energies tablepsf = TablePSF.from_shape(shape="gauss", width=sigma, rad=rad) energytable_temp = np.tile(tablepsf.psf_value, (tableshape[0], 1)) elif np.size(sigma) == np.size(energy): # one width per energy energytable_temp = np.zeros(tableshape) * u.sr ** -1 for idx in np.arange(tableshape[0]): energytable_temp[idx, :] = TablePSF.from_shape( shape="gauss", width=sigma[idx], rad=rad ).psf_value else: raise AssertionError( "There need to be the same number of sigma values as energies" ) table_psf = EnergyDependentTablePSF( energy_axis_true=energy_axis_true, rad_axis=rad_axis, exposure=None, psf_value=energytable_temp, ) return cls.from_energy_dependent_table_psf(table_psf)
[docs] def to_image(self, spectrum=None, keepdims=True): """Reduce to a 2-D map after weighing with the associated exposure and a spectrum Parameters ---------- spectrum : `~gammapy.modeling.models.SpectralModel`, optional Spectral model to compute the weights. Default is power-law with spectral index of 2. keepdims : bool, optional If True, the energy axis is kept with one bin. If False, the axis is removed Returns ------- psf_out : `PSFMap` `PSFMap` with the energy axis summed over """ from gammapy.makers.utils import _map_spectrum_weight if spectrum is None: spectrum = PowerLawSpectralModel(index=2.0) exp_weighed = _map_spectrum_weight(self.exposure_map, spectrum) exposure = exp_weighed.sum_over_axes( axes_names=["energy_true"], keepdims=keepdims ) psf_data = exp_weighed.data * self.psf_map.data / exposure.data psf_map = Map.from_geom(geom=self.psf_map.geom, data=psf_data, unit="sr-1") psf = psf_map.sum_over_axes(axes_names=["energy_true"], keepdims=keepdims) return self.__class__(psf_map=psf, exposure_map=exposure)