GaussianTemporalModel¶
-
class
gammapy.modeling.models.
GaussianTemporalModel
(**kwargs)[source]¶ Bases:
gammapy.modeling.models.TemporalModel
A Gaussian temporal profile
- ..math::
F(t) = exp( -0.5 * frac{ (t - t_{ref})^2 } { sigma^2 })
- Parameters
- t_ref: `~astropy.units.Quantity`
The reference time in mjd at the peak.
- sigma
Quantity
Width of the gaussian profile.
Attributes Summary
Parameters (
Parameters
)A model parameter.
A model parameter.
Methods Summary
__call__
(time)Evaluate model
copy
()A deep copy.
create
(tag[, model_type])Create a model instance.
evaluate
(time, t_ref, sigma)from_dict
(data)from_parameters
(parameters, **kwargs)Create model from parameter list
integral
(t_min, t_max, **kwargs)Evaluate the integrated flux within the given time intervals
plot
(time_range[, ax])Plot Temporal Model.
time_sum
(t_min, t_max)Total time between t_min and t_max
to_dict
([full_output])Create dict for YAML serialisation
Attributes Documentation
-
covariance
¶
-
default_parameters
= <gammapy.modeling.parameter.Parameters object>¶
-
parameters
¶ Parameters (
Parameters
)
-
sigma
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
t_ref
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
tag
= ['GaussianTemporalModel', 'gauss']¶
-
type
¶
Methods Documentation
-
copy
()¶ A deep copy.
-
static
create
(tag, model_type=None, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling.models import Model >>> spectral_model = Model.create("pl-2", model_type="spectral", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
classmethod
from_dict
(data)¶
-
classmethod
from_parameters
(parameters, **kwargs)¶ Create model from parameter list
- Parameters
- parameters
Parameters
Parameters for init
- parameters
- Returns
- model
Model
Model instance
- model
-
integral
(t_min, t_max, **kwargs)[source]¶ Evaluate the integrated flux within the given time intervals
- Parameters
- t_min: `~astropy.time.Time`
Start times of observation
- t_max: `~astropy.time.Time`
Stop times of observation
- Returns
- normfloat
Integrated flux norm on the given time intervals
-
plot
(time_range, ax=None)¶ Plot Temporal Model.
-
static
time_sum
(t_min, t_max)¶ Total time between t_min and t_max
- Parameters
- t_min, t_max: `~astropy.time.Time`
Lower and upper bound of integration range
- Returns
- time_sum
TimeDelta
Summed time in the intervals.
- time_sum
-
to_dict
(full_output=False)¶ Create dict for YAML serialisation