Source code for gammapy.modeling.models.spectral

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Spectral models for Gammapy."""

import logging
import warnings
import operator
import os
from pathlib import Path
import numpy as np
import scipy.optimize
import scipy.special
import scipy.stats as stats
import astropy.units as u
from astropy import constants as const
from astropy.table import Table
from astropy.units import Quantity
from astropy.utils.decorators import classproperty
from astropy.visualization import quantity_support
import matplotlib.pyplot as plt
from gammapy.maps import MapAxis, RegionNDMap
from gammapy.maps.axes import UNIT_STRING_FORMAT
from gammapy.modeling import Parameter, Parameters
from gammapy.utils.compat import COPY_IF_NEEDED
from gammapy.utils.integrate import trapz_loglog
from gammapy.utils.interpolation import (
    ScaledRegularGridInterpolator,
    interpolation_scale,
)
from gammapy.utils.roots import find_roots
from gammapy.utils.scripts import make_path
from gammapy.utils.random import get_random_state
from gammapy.utils.deprecation import GammapyDeprecationWarning
from ..covariance import CovarianceMixin
from .core import ModelBase

log = logging.getLogger(__name__)


__all__ = [
    "BrokenPowerLawSpectralModel",
    "CompoundSpectralModel",
    "ConstantSpectralModel",
    "EBLAbsorptionNormSpectralModel",
    "ExpCutoffPowerLaw3FGLSpectralModel",
    "ExpCutoffPowerLawNormSpectralModel",
    "ExpCutoffPowerLawSpectralModel",
    "GaussianSpectralModel",
    "integrate_spectrum",
    "LogParabolaNormSpectralModel",
    "LogParabolaSpectralModel",
    "NaimaSpectralModel",
    "PiecewiseNormSpectralModel",
    "PowerLaw2SpectralModel",
    "PowerLawNormSpectralModel",
    "PowerLawSpectralModel",
    "scale_plot_flux",
    "ScaleSpectralModel",
    "SmoothBrokenPowerLawSpectralModel",
    "SpectralModel",
    "SuperExpCutoffPowerLaw3FGLSpectralModel",
    "SuperExpCutoffPowerLaw4FGLDR3SpectralModel",
    "SuperExpCutoffPowerLaw4FGLSpectralModel",
    "TemplateSpectralModel",
    "TemplateNDSpectralModel",
    "EBL_DATA_BUILTIN",
]


EBL_DATA_BUILTIN = {
    "franceschini": "$GAMMAPY_DATA/ebl/ebl_franceschini.fits.gz",
    "dominguez": "$GAMMAPY_DATA/ebl/ebl_dominguez11.fits.gz",
    "finke": "$GAMMAPY_DATA/ebl/frd_abs.fits.gz",
    "franceschini17": "$GAMMAPY_DATA/ebl/ebl_franceschini_2017.fits.gz",
    "saldana-lopez21": "$GAMMAPY_DATA/ebl/ebl_saldana-lopez_2021.fits.gz",
}


[docs] def scale_plot_flux(flux, energy_power=0): """Scale flux to plot. Parameters ---------- flux : `Map` Flux map. energy_power : int, optional Power of energy to multiply flux axis with. Default is 0. Returns ------- flux : `Map` Scaled flux map. """ energy = flux.geom.get_coord(sparse=True)["energy"] try: eunit = [_ for _ in flux.unit.bases if _.physical_type == "energy"][0] except IndexError: eunit = energy.unit y = flux * np.power(energy, energy_power) return y.to_unit(flux.unit * eunit**energy_power)
[docs] def integrate_spectrum(func, energy_min, energy_max, ndecade=100): """Integrate one-dimensional function using the log-log trapezoidal rule. Internally an oversampling of the energy bins to "ndecade" is used. Parameters ---------- func : callable Function to integrate. energy_min : `~astropy.units.Quantity` Integration range minimum. energy_max : `~astropy.units.Quantity` Integration range minimum. ndecade : int, optional Number of grid points per decade used for the integration. Default is 100. """ # Here we impose to duplicate the number num = np.maximum(np.max(ndecade * np.log10(energy_max / energy_min)), 2) energy = np.geomspace(energy_min, energy_max, num=int(num), axis=-1) integral = trapz_loglog(func(energy), energy, axis=-1) return integral.sum(axis=0)
[docs] class SpectralModel(ModelBase): """Spectral model base class.""" _type = "spectral"
[docs] def __call__(self, energy): kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, energy) return self.evaluate(energy, **kwargs)
@classproperty def is_norm_spectral_model(cls): """Whether model is a norm spectral model.""" return "Norm" in cls.__name__ @staticmethod def _convert_evaluate_unit(kwargs_ref, energy): kwargs = {} for name, quantity in kwargs_ref.items(): if quantity.unit.physical_type == "energy": quantity = quantity.to(energy.unit) kwargs[name] = quantity return kwargs def __add__(self, model): if not isinstance(model, SpectralModel): model = ConstantSpectralModel(const=model) return CompoundSpectralModel(self, model, operator.add) def __mul__(self, other): if isinstance(other, SpectralModel): return CompoundSpectralModel(self, other, operator.mul) else: raise TypeError(f"Multiplication invalid for type {other!r}") def __radd__(self, model): return self.__add__(model) def __sub__(self, model): if not isinstance(model, SpectralModel): model = ConstantSpectralModel(const=model) return CompoundSpectralModel(self, model, operator.sub) def __rsub__(self, model): return self.__sub__(model) def _samples(self, fct, n_samples=10000, random_state=42): """Create SED samples from parameters and covariance using multivariate normal distribution. Parameters ---------- fct : `~astropy.units.Quantity` Function to estimate the SED. n_samples : int, optional Number of samples to generate. Default is 10000. random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}, optional Defines random number generator initialisation. Passed to `~gammapy.utils.random.get_random_state`. Default is 42. Returns ------- sed_samples : np.array Array of SED samples """ rng = get_random_state(random_state) samples = rng.multivariate_normal( self.parameters.value, self.covariance.data, n_samples, ) return u.Quantity([fct(samples[k, :]) for k in range(n_samples)]) def _get_errors(self, samples, n_sigma=1): """Compute median, negative, and positive errors from samples of SED. Parameters ---------- sed_samples : `numpy.array` Array of SED samples (where samples are along axis zero). n_sigma : int Number of sigma to use for asymmetric error computation. Default is 1. Returns ------- median, errn , errp: tuple of `~astropy.units.Quantity` Median, negative, and positive errors """ cdf = stats.norm.cdf median = np.percentile(samples, 50, axis=0) errn = median - np.percentile(samples, 100 * cdf(-n_sigma), axis=0) errp = np.percentile(samples, 100 * cdf(n_sigma), axis=0) - median return u.Quantity( [np.atleast_1d(median), np.atleast_1d(errn), np.atleast_1d(errp)], unit=samples.unit, ).squeeze()
[docs] def evaluate_error(self, energy, epsilon=1e-4, n_samples=3500, random_state=42): """Evaluate spectral model error from parameter distribution sampling. Parameters ---------- energy : `~astropy.units.Quantity` Energy at which to evaluate. epsilon : float, optional Step size of the gradient evaluation. Given as a fraction of the parameter error. Default is 1e-4. Deprecated in v2.0 and unused. n_samples : int, optional Number of samples to generate per parameter. Default is 3500. random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}, optional Defines random number generator initialisation. Passed to `~gammapy.utils.random.get_random_state`. Default is 42. Returns ------- dnde, dnde_errn , dnde_errp : tuple of `~astropy.units.Quantity` Median, negative and positive errors on the differential flux at the given energy. """ if epsilon != 1e-4: # TODO: remove in v2.1 warnings.warn( "epsilon is unused and deprecated in v2.0", GammapyDeprecationWarning, stacklevel=2, ) m = self.copy() n_pars = len(m.parameters) def fct(values): m.parameters.value = values return m(energy) samples = self._samples( fct, n_samples=n_pars * n_samples, random_state=random_state ) return self._get_errors(samples)
@property def pivot_energy(self): """Pivot or decorrelation energy, for a given spectral model calculated numerically. It is defined as the energy at which the correlation between the spectral parameters is minimized. Returns ------- pivot energy : `~astropy.units.Quantity` The energy at which the statistical error in the computed flux is smallest. If no minimum is found, NaN will be returned. """ x_unit = self.reference.unit def min_func(x): """Function to minimise.""" x = np.exp(x) dnde, dnde_errn, dnde_errp = self.evaluate_error(x * x_unit, n_samples=400) return np.sqrt(dnde_errn**2 + dnde_errp**2) / dnde bounds = [np.log(self.reference.value) - 3, np.log(self.reference.value) + 3] std = np.std(min_func(x=np.linspace(bounds[0], bounds[1], 100))) if std < 1e-5: log.warning( "The relative error on the flux does not depend on energy. No pivot energy found." ) return np.nan * x_unit minimizer = scipy.optimize.minimize_scalar(min_func, bounds=bounds) if not minimizer.success: log.warning( "No minima found in the relative error on the flux. Pivot energy computation failed." ) return np.nan * x_unit else: return np.exp(minimizer.x) * x_unit
[docs] def integral(self, energy_min, energy_max, **kwargs): r"""Integrate spectral model numerically if no analytical solution defined. .. math:: F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. **kwargs : dict Keyword arguments passed to :func:`~gammapy.modeling.models.spectral.integrate_spectrum`. """ if hasattr(self, "evaluate_integral"): kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, energy_min) return self.evaluate_integral(energy_min, energy_max, **kwargs) else: return integrate_spectrum(self, energy_min, energy_max, **kwargs)
[docs] def integral_error( self, energy_min, energy_max, epsilon=1e-4, n_samples=3500, **kwargs ): """Evaluate the error of the integral flux of a given spectrum in a given energy range. Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. epsilon : float, optional Step size of the gradient evaluation. Given as a fraction of the parameter error. Default is 1e-4. Deprecated in v2.0 and unused. n_samples : int, optional Number of samples to generate per parameter. Default is 3500. Returns ------- flux, flux_errn, flux_errp : tuple of `~astropy.units.Quantity` Median, negative, and positive errors on the integral flux between energy_min and energy_max. """ if epsilon != 1e-4: # TODO: remove in v2.1 warnings.warn( "epsilon is unused and deprecated in v2.0", GammapyDeprecationWarning, stacklevel=2, ) m = self.copy() n_pars = len(m.parameters) def fct(values): m.parameters.value = values return m.integral(energy_min, energy_max, **kwargs) samples = self._samples(fct, n_samples=n_pars * n_samples) return self._get_errors(samples)
[docs] def energy_flux(self, energy_min, energy_max, **kwargs): r"""Compute energy flux in given energy range. .. math:: G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. **kwargs : dict Keyword arguments passed to :func:`~gammapy.modeling.models.spectral.integrate_spectrum`. """ def f(x): return x * self(x) if hasattr(self, "evaluate_energy_flux"): kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, energy_min) return self.evaluate_energy_flux(energy_min, energy_max, **kwargs) else: return integrate_spectrum(f, energy_min, energy_max, **kwargs)
[docs] def energy_flux_error( self, energy_min, energy_max, epsilon=1e-4, n_samples=3500, **kwargs ): """Evaluate the error of the energy flux of a given spectrum in a given energy range. Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. epsilon : float, optional Step size of the gradient evaluation. Given as a fraction of the parameter error. Default is 1e-4. Deprecated in v2.0 and unused. n_samples : int, optional Number of samples to generate per parameter. Default is 3500. Returns ------- energy_flux, energy_flux_errn, energy_flux_errp : tuple of `~astropy.units.Quantity` Median, negative, and positive errors on the energy flux between energy_min and energy_max. """ if epsilon != 1e-4: # TODO: remove in v2.1 warnings.warn( "epsilon is unused and deprecated in v2.0", GammapyDeprecationWarning, stacklevel=2, ) m = self.copy() n_pars = len(m.parameters) def fct(values): m.parameters.value = values return m.energy_flux(energy_min, energy_max, **kwargs) samples = self._samples(fct, n_samples=n_pars * n_samples) return self._get_errors(samples)
[docs] def reference_fluxes(self, energy_axis): """Get reference fluxes for a given energy axis. Parameters ---------- energy_axis : `MapAxis` Energy axis. Returns ------- fluxes : dict of `~astropy.units.Quantity` Reference fluxes. """ energy = energy_axis.center energy_min, energy_max = energy_axis.edges_min, energy_axis.edges_max return { "e_ref": energy, "e_min": energy_min, "e_max": energy_max, "ref_dnde": self(energy), "ref_flux": self.integral(energy_min, energy_max), "ref_eflux": self.energy_flux(energy_min, energy_max), "ref_e2dnde": self(energy) * energy**2, }
def _get_plot_flux(self, energy, sed_type): flux = RegionNDMap.create(region=None, axes=[energy]) if sed_type in ["dnde", "norm"]: output = self(energy.center) elif sed_type == "e2dnde": output = energy.center**2 * self(energy.center) elif sed_type == "flux": output = self.integral(energy.edges_min, energy.edges_max) elif sed_type == "eflux": output = self.energy_flux(energy.edges_min, energy.edges_max) else: raise ValueError(f"Not a valid SED type: '{sed_type}'") flux.quantity = output return flux def _get_plot_flux_error(self, energy, sed_type, n_samples): flux = RegionNDMap.create(region=None, axes=[energy]) flux_errn = RegionNDMap.create(region=None, axes=[energy]) flux_errp = RegionNDMap.create(region=None, axes=[energy]) if sed_type in ["dnde", "norm"]: output = self.evaluate_error(energy.center, n_samples=n_samples) elif sed_type == "e2dnde": output = energy.center**2 * self.evaluate_error( energy.center, n_samples=n_samples ) elif sed_type == "flux": output = self.integral_error( energy.edges_min, energy.edges_max, n_samples=n_samples ) elif sed_type == "eflux": output = self.energy_flux_error( energy.edges_min, energy.edges_max, n_samples=n_samples ) else: raise ValueError(f"Not a valid SED type: '{sed_type}'") flux.quantity, flux_errn.quantity, flux_errp.quantity = output return flux, flux_errn, flux_errp
[docs] def plot( self, energy_bounds, ax=None, sed_type="dnde", energy_power=0, n_points=100, **kwargs, ): """Plot spectral model curve. By default a log-log scaling of the axes is used, if you want to change the y-axis scaling to linear you can use:: >>> from gammapy.modeling.models import ExpCutoffPowerLawSpectralModel >>> from astropy import units as u >>> pwl = ExpCutoffPowerLawSpectralModel() >>> ax = pwl.plot(energy_bounds=(0.1, 100) * u.TeV) >>> ax.set_yscale('linear') Parameters ---------- energy_bounds : `~astropy.units.Quantity`, list of `~astropy.units.Quantity` or `~gammapy.maps.MapAxis` Energy bounds between which the model is to be plotted. Or an axis defining the energy bounds between which the model is to be plotted. ax : `~matplotlib.axes.Axes`, optional Matplotlib axes. Default is None. sed_type : {"dnde", "flux", "eflux", "e2dnde"} Evaluation methods of the model. Default is "dnde". energy_power : int, optional Power of energy to multiply flux axis with. Default is 0. n_points : int, optional Number of evaluation nodes. Default is 100. **kwargs : dict Keyword arguments forwarded to `~matplotlib.pyplot.plot`. Returns ------- ax : `~matplotlib.axes.Axes`, optional Matplotlib axes. Notes ----- If ``energy_bounds`` is supplied as a list, tuple, or Quantity, an ``energy_axis`` is created internally with ``n_points`` bins between the given bounds. """ from gammapy.estimators.map.core import DEFAULT_UNIT if self.is_norm_spectral_model: sed_type = "norm" if isinstance(energy_bounds, (tuple, list, Quantity)): energy_min, energy_max = energy_bounds energy = MapAxis.from_energy_bounds( energy_min, energy_max, n_points, ) elif isinstance(energy_bounds, MapAxis): energy = energy_bounds ax = plt.gca() if ax is None else ax if ax.yaxis.units is None: ax.yaxis.set_units(DEFAULT_UNIT[sed_type] * energy.unit**energy_power) flux = self._get_plot_flux(sed_type=sed_type, energy=energy) flux = scale_plot_flux(flux, energy_power=energy_power) with quantity_support(): ax.plot(energy.center, flux.quantity[:, 0, 0], **kwargs) self._plot_format_ax(ax, energy_power, sed_type) return ax
[docs] def plot_error( self, energy_bounds, ax=None, sed_type="dnde", energy_power=0, n_points=100, n_samples=3500, **kwargs, ): """Plot spectral model error band. .. note:: This method calls ``ax.set_yscale("log", nonpositive='clip')`` and ``ax.set_xscale("log", nonposx='clip')`` to create a log-log representation. The additional argument ``nonposx='clip'`` avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623). When you call ``plt.loglog()`` or ``plt.semilogy()`` explicitly in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also use ``plt.loglog(nonposx='clip', nonpositive='clip')`` or ``plt.semilogy(nonpositive='clip')``. Parameters ---------- energy_bounds : `~astropy.units.Quantity`, list of `~astropy.units.Quantity` or `~gammapy.maps.MapAxis` Energy bounds between which the model is to be plotted. Or an axis defining the energy bounds between which the model is to be plotted. ax : `~matplotlib.axes.Axes`, optional Matplotlib axes. Default is None. sed_type : {"dnde", "flux", "eflux", "e2dnde"} Evaluation methods of the model. Default is "dnde". energy_power : int, optional Power of energy to multiply flux axis with. Default is 0. n_points : int, optional Number of evaluation nodes. Default is 100. n_samples : int, optional Number of samples generated per parameter to estimate the error band. Default is 3500. **kwargs : dict Keyword arguments forwarded to `matplotlib.pyplot.fill_between`. Returns ------- ax : `~matplotlib.axes.Axes`, optional Matplotlib axes. Notes ----- If ``energy_bounds`` is supplied as a list, tuple, or Quantity, an ``energy_axis`` is created internally with ``n_points`` bins between the given bounds. """ from gammapy.estimators.map.core import DEFAULT_UNIT if self.is_norm_spectral_model: sed_type = "norm" if isinstance(energy_bounds, (tuple, list, Quantity)): energy_min, energy_max = energy_bounds energy = MapAxis.from_energy_bounds( energy_min, energy_max, n_points, ) elif isinstance(energy_bounds, MapAxis): energy = energy_bounds ax = plt.gca() if ax is None else ax kwargs.setdefault("facecolor", "black") kwargs.setdefault("alpha", 0.2) kwargs.setdefault("linewidth", 0) if ax.yaxis.units is None: ax.yaxis.set_units(DEFAULT_UNIT[sed_type] * energy.unit**energy_power) flux, flux_errn, flux_errp = self._get_plot_flux_error( sed_type=sed_type, energy=energy, n_samples=n_samples ) y_lo = scale_plot_flux(flux - flux_errn, energy_power).quantity[:, 0, 0] y_hi = scale_plot_flux(flux + flux_errp, energy_power).quantity[:, 0, 0] with quantity_support(): ax.fill_between(energy.center, y_lo, y_hi, **kwargs) self._plot_format_ax(ax, energy_power, sed_type) return ax
@staticmethod def _plot_format_ax(ax, energy_power, sed_type): ax.set_xlabel(f"Energy [{ax.xaxis.units.to_string(UNIT_STRING_FORMAT)}]") if energy_power > 0: ax.set_ylabel( f"e{energy_power} * {sed_type} [{ax.yaxis.units.to_string(UNIT_STRING_FORMAT)}]" ) else: ax.set_ylabel( f"{sed_type} [{ax.yaxis.units.to_string(UNIT_STRING_FORMAT)}]" ) ax.set_xscale("log", nonpositive="clip") ax.set_yscale("log", nonpositive="clip")
[docs] def spectral_index(self, energy, epsilon=1e-5): """Compute spectral index at given energy. Parameters ---------- energy : `~astropy.units.Quantity` Energy at which to estimate the index. epsilon : float, optional Fractional energy increment to use for determining the spectral index. Default is 1e-5. Returns ------- index : float Estimated spectral index. """ f1 = self(energy) f2 = self(energy * (1 + epsilon)) return np.log(f1 / f2) / np.log(1 + epsilon)
[docs] def spectral_index_error(self, energy, epsilon=1e-5, n_samples=3500): """Evaluate the error on spectral index at the given energy. Parameters ---------- energy : `~astropy.units.Quantity` Energy at which to estimate the index. epsilon : float, optional Fractional energy increment to use for determining the spectral index. Default is 1e-5. Deprecated in v2.0 and unsued. n_samples : int, optional Number of samples to generate per parameter. Default is 3500. Returns ------- index, index_errn, index_errp : tuple of float Median, negative, and positive error on the spectral index. """ if epsilon != 1e-5: # TODO: remove in v2.1 warnings.warn( "epsilon is unused and deprecated in v2.0", GammapyDeprecationWarning, stacklevel=2, ) m = self.copy() n_pars = len(m.parameters) def fct(values): m.parameters.value = values return m.spectral_index(energy, epsilon=1e-5) samples = self._samples(fct, n_samples=n_pars * n_samples) return self._get_errors(samples)
[docs] def inverse(self, value, energy_min=0.1 * u.TeV, energy_max=100 * u.TeV): """Return energy for a given function value of the spectral model. Calls the `scipy.optimize.brentq` numerical root finding method. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. energy_min : `~astropy.units.Quantity`, optional Lower energy bound of the roots finding. Default is 0.1 TeV. energy_max : `~astropy.units.Quantity`, optional Upper energy bound of the roots finding. Default is 100 TeV. Returns ------- energy : `~astropy.units.Quantity` Energies at which the model has the given ``value``. """ eunit = "TeV" energy_min = energy_min.to(eunit) energy_max = energy_max.to(eunit) def f(x): # scale by 1e12 to achieve better precision energy = u.Quantity(x, eunit, copy=COPY_IF_NEEDED) y = self(energy).to_value(value.unit) return 1e12 * (y - value.value) roots, res = find_roots(f, energy_min, energy_max, points_scale="log") return roots
[docs] def inverse_all(self, values, energy_min=0.1 * u.TeV, energy_max=100 * u.TeV): """Return energies for multiple function values of the spectral model. Calls the `scipy.optimize.brentq` numerical root finding method. Parameters ---------- values : `~astropy.units.Quantity` Function values of the spectral model. energy_min : `~astropy.units.Quantity`, optional Lower energy bound of the roots finding. Default is 0.1 TeV. energy_max : `~astropy.units.Quantity`, optional Upper energy bound of the roots finding. Default is 100 TeV. Returns ------- energy : list of `~astropy.units.Quantity` Each element contains the energies at which the model has corresponding value of ``values``. """ energies = [] for val in np.atleast_1d(values): res = self.inverse(val, energy_min, energy_max) energies.append(res) return energies
[docs] class ConstantSpectralModel(SpectralModel): r"""Constant model. For more information see :ref:`constant-spectral-model`. Parameters ---------- const : `~astropy.units.Quantity` :math:`k`. Default is 1e-12 cm-2 s-1 TeV-1. """ tag = ["ConstantSpectralModel", "const"] const = Parameter("const", "1e-12 cm-2 s-1 TeV-1")
[docs] @staticmethod def evaluate(energy, const): """Evaluate the model (static function).""" return np.ones(np.atleast_1d(energy).shape) * const
[docs] class CompoundSpectralModel(CovarianceMixin, SpectralModel): """Arithmetic combination of two spectral models. For more information see :ref:`compound-spectral-model`. """ tag = ["CompoundSpectralModel", "compound"] def __init__(self, model1, model2, operator): self.model1 = model1 self.model2 = model2 self.operator = operator super().__init__() @property def _models(self): return [self.model1, self.model2] @property def parameters(self): return self.model1.parameters + self.model2.parameters @property def parameters_unique_names(self): names = [] for idx, model in enumerate(self._models): for par_name in model.parameters_unique_names: components = [f"model{idx+1}", par_name] name = ".".join(components) names.append(name) return names def __str__(self): return ( f"{self.__class__.__name__}\n" f" Component 1 : {self.model1}\n" f" Component 2 : {self.model2}\n" f" Operator : {self.operator.__name__}\n" )
[docs] def __call__(self, energy): val1 = self.model1(energy) val2 = self.model2(energy) return self.operator(val1, val2)
[docs] def to_dict(self, full_output=False): dict1 = self.model1.to_dict(full_output) dict2 = self.model2.to_dict(full_output) return { self._type: { "type": self.tag[0], "model1": dict1["spectral"], # for cleaner output "model2": dict2["spectral"], "operator": self.operator.__name__, } }
[docs] def evaluate(self, energy, *args): args1 = args[: len(self.model1.parameters)] args2 = args[len(self.model1.parameters) :] val1 = self.model1.evaluate(energy, *args1) val2 = self.model2.evaluate(energy, *args2) return self.operator(val1, val2)
[docs] @classmethod def from_dict(cls, data, **kwargs): from gammapy.modeling.models import SPECTRAL_MODEL_REGISTRY data = data["spectral"] model1_cls = SPECTRAL_MODEL_REGISTRY.get_cls(data["model1"]["type"]) model1 = model1_cls.from_dict({"spectral": data["model1"]}) model2_cls = SPECTRAL_MODEL_REGISTRY.get_cls(data["model2"]["type"]) model2 = model2_cls.from_dict({"spectral": data["model2"]}) op = getattr(operator, data["operator"]) return cls(model1, model2, op)
[docs] class PowerLawSpectralModel(SpectralModel): r"""Spectral power-law model. For more information see :ref:`powerlaw-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma`. Default is 2.0. amplitude : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1e-12 cm-2 s-1 TeV-1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 1 TeV. See Also -------- PowerLaw2SpectralModel, PowerLawNormSpectralModel """ tag = ["PowerLawSpectralModel", "pl"] index = Parameter("index", 2.0) amplitude = Parameter( "amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log", ) reference = Parameter("reference", "1 TeV", frozen=True)
[docs] @staticmethod def evaluate(energy, index, amplitude, reference): """Evaluate the model (static function).""" return amplitude * np.power((energy / reference), -index)
[docs] @staticmethod def evaluate_integral(energy_min, energy_max, index, amplitude, reference): r"""Integrate power law analytically (static function). .. math:: F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}\phi(E)dE = \left. \phi_0 \frac{E_0}{-\Gamma + 1} \left( \frac{E}{E_0} \right)^{-\Gamma + 1} \right \vert _{E_{min}}^{E_{max}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. """ val = -1 * index + 1 prefactor = amplitude * reference / val upper = np.power((energy_max / reference), val) lower = np.power((energy_min / reference), val) integral = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): integral[mask] = (amplitude * reference * np.log(energy_max / energy_min))[ mask ] return integral
[docs] @staticmethod def evaluate_energy_flux(energy_min, energy_max, index, amplitude, reference): r"""Compute energy flux in given energy range analytically (static function). .. math:: G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}E \phi(E)dE = \left. \phi_0 \frac{E_0^2}{-\Gamma + 2} \left( \frac{E}{E_0} \right)^{-\Gamma + 2} \right \vert _{E_{min}}^{E_{max}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. """ val = -1 * index + 2 prefactor = amplitude * reference**2 / val upper = (energy_max / reference) ** val lower = (energy_min / reference) ** val energy_flux = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): # see https://www.wolframalpha.com/input/?i=a+*+x+*+(x%2Fb)+%5E+(-2) # for reference energy_flux[mask] = ( amplitude * reference**2 * np.log(energy_max / energy_min)[mask] ) return energy_flux
[docs] def inverse(self, value, *args): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ base = value / self.amplitude.quantity return self.reference.quantity * np.power(base, -1.0 / self.index.value)
@property def pivot_energy(self): r"""The pivot or decorrelation energy is defined as: .. math:: E_D = E_0 * \exp{cov(\phi_0, \Gamma) / (\phi_0 \Delta \Gamma^2)} Formula (1) in https://arxiv.org/pdf/0910.4881.pdf Returns ------- pivot energy : `~astropy.units.Quantity` If no minimum is found, NaN will be returned. """ index_err = self.index.error reference = self.reference.quantity amplitude = self.amplitude.quantity cov_index_ampl = self.covariance.data[0, 1] * amplitude.unit return reference * np.exp(cov_index_ampl / (amplitude * index_err**2))
[docs] class PowerLawNormSpectralModel(SpectralModel): r"""Spectral power-law model with normalized amplitude parameter. Parameters ---------- tilt : `~astropy.units.Quantity` :math:`\Gamma`. Default is 0. norm : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 1 TeV. See Also -------- PowerLawSpectralModel, PowerLaw2SpectralModel """ tag = ["PowerLawNormSpectralModel", "pl-norm"] tilt = Parameter("tilt", 0, frozen=True) norm = Parameter("norm", 1, unit="", interp="log") reference = Parameter("reference", "1 TeV", frozen=True)
[docs] @staticmethod def evaluate(energy, tilt, norm, reference): """Evaluate the model (static function).""" return norm * np.power((energy / reference), -tilt)
[docs] @staticmethod def evaluate_integral(energy_min, energy_max, tilt, norm, reference): """Evaluate powerlaw integral.""" val = -1 * tilt + 1 prefactor = norm * reference / val upper = np.power((energy_max / reference), val) lower = np.power((energy_min / reference), val) integral = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): integral[mask] = (norm * reference * np.log(energy_max / energy_min))[mask] return integral
[docs] @staticmethod def evaluate_energy_flux(energy_min, energy_max, tilt, norm, reference): """Evaluate the energy flux (static function).""" val = -1 * tilt + 2 prefactor = norm * reference**2 / val upper = (energy_max / reference) ** val lower = (energy_min / reference) ** val energy_flux = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): # see https://www.wolframalpha.com/input/?i=a+*+x+*+(x%2Fb)+%5E+(-2) # for reference energy_flux[mask] = ( norm * reference**2 * np.log(energy_max / energy_min)[mask] ) return energy_flux
[docs] def inverse(self, value, *args): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ base = value / self.norm.quantity return self.reference.quantity * np.power(base, -1.0 / self.tilt.value)
@property def pivot_energy(self): r"""The pivot or decorrelation energy is defined as: .. math:: E_D = E_0 * \exp{cov(\phi_0, \Gamma) / (\phi_0 \Delta \Gamma^2)} Formula (1) in https://arxiv.org/pdf/0910.4881.pdf Returns ------- pivot energy : `~astropy.units.Quantity` If no minimum is found, NaN will be returned. """ tilt_err = self.tilt.error reference = self.reference.quantity norm = self.norm.quantity cov_tilt_norm = self.covariance.data[0, 1] * norm.unit return reference * np.exp(cov_tilt_norm / (norm * tilt_err**2))
[docs] class PowerLaw2SpectralModel(SpectralModel): r"""Spectral power-law model with integral as amplitude parameter. For more information see :ref:`powerlaw2-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` Spectral index :math:`\Gamma`. Default is 2. amplitude : `~astropy.units.Quantity` Integral flux :math:`F_0`. Default is 1e-12 cm-2 s-1. emin : `~astropy.units.Quantity` Lower energy limit :math:`E_{0, min}`. Default is 0.1 TeV. emax : `~astropy.units.Quantity` Upper energy limit :math:`E_{0, max}`. Default is 100 TeV. See Also -------- PowerLawSpectralModel, PowerLawNormSpectralModel """ tag = ["PowerLaw2SpectralModel", "pl-2"] amplitude = Parameter( name="amplitude", value="1e-12 cm-2 s-1", scale_method="scale10", interp="log", ) index = Parameter("index", 2) emin = Parameter("emin", "0.1 TeV", frozen=True) emax = Parameter("emax", "100 TeV", frozen=True)
[docs] @staticmethod def evaluate(energy, amplitude, index, emin, emax): """Evaluate the model (static function).""" top = -index + 1 # to get the energies dimensionless we use a modified formula bottom = emax - emin * (emin / emax) ** (-index) return amplitude * (top / bottom) * np.power(energy / emax, -index)
[docs] @staticmethod def evaluate_integral(energy_min, energy_max, amplitude, index, emin, emax): r"""Integrate power law analytically. .. math:: F(E_{min}, E_{max}) = F_0 \cdot \frac{E_{max}^{\Gamma + 1} \ - E_{min}^{\Gamma + 1}}{E_{0, max}^{\Gamma + 1} \ - E_{0, min}^{\Gamma + 1}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. """ temp1 = np.power(energy_max, -index.value + 1) temp2 = np.power(energy_min, -index.value + 1) top = temp1 - temp2 temp1 = np.power(emax, -index.value + 1) temp2 = np.power(emin, -index.value + 1) bottom = temp1 - temp2 return amplitude * top / bottom
[docs] def inverse(self, value, *args): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ amplitude = self.amplitude.quantity index = self.index.value energy_min = self.emin.quantity energy_max = self.emax.quantity # to get the energies dimensionless we use a modified formula top = -index + 1 bottom = energy_max - energy_min * (energy_min / energy_max) ** (-index) term = (bottom / top) * (value / amplitude) return np.power(term.to_value(""), -1.0 / index) * energy_max
[docs] class BrokenPowerLawSpectralModel(SpectralModel): r"""Spectral broken power-law model. For more information see :ref:`broken-powerlaw-spectral-model`. Parameters ---------- index1 : `~astropy.units.Quantity` :math:`\Gamma1`. Default is 2. index2 : `~astropy.units.Quantity` :math:`\Gamma2`. Default is 2. amplitude : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1e-12 cm-2 s-1 TeV-1. ebreak : `~astropy.units.Quantity` :math:`E_{break}`. Default is 1 TeV. See Also -------- SmoothBrokenPowerLawSpectralModel """ tag = ["BrokenPowerLawSpectralModel", "bpl"] index1 = Parameter("index1", 2.0) index2 = Parameter("index2", 2.0) amplitude = Parameter( name="amplitude", value="1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log", ) ebreak = Parameter("ebreak", "1 TeV")
[docs] @staticmethod def evaluate(energy, index1, index2, amplitude, ebreak): """Evaluate the model (static function).""" energy = np.atleast_1d(energy) cond = energy < ebreak bpwl = amplitude * np.ones(energy.shape) bpwl[cond] *= (energy[cond] / ebreak) ** (-index1) bpwl[~cond] *= (energy[~cond] / ebreak) ** (-index2) return bpwl
[docs] class SmoothBrokenPowerLawSpectralModel(SpectralModel): r"""Spectral smooth broken power-law model. For more information see :ref:`smooth-broken-powerlaw-spectral-model`. Parameters ---------- index1 : `~astropy.units.Quantity` :math:`\Gamma_1`. Default is 2. index2 : `~astropy.units.Quantity` :math:`\Gamma_2`. Default is 2. amplitude : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1e-12 cm-2 s-1 TeV-1. ebreak : `~astropy.units.Quantity` :math:`E_{break}`. Default is 1 TeV. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 1 TeV. beta : `~astropy.units.Quantity` :math:`\beta`. Default is 1. See Also -------- BrokenPowerLawSpectralModel """ tag = ["SmoothBrokenPowerLawSpectralModel", "sbpl"] index1 = Parameter("index1", 2.0) index2 = Parameter("index2", 2.0) amplitude = Parameter( name="amplitude", value="1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log", ) ebreak = Parameter("ebreak", "1 TeV") reference = Parameter("reference", "1 TeV", frozen=True) beta = Parameter("beta", 1, frozen=True)
[docs] @staticmethod def evaluate(energy, index1, index2, amplitude, ebreak, reference, beta): """Evaluate the model (static function).""" beta *= np.sign(index2 - index1) pwl = amplitude * (energy / reference) ** (-index1) brk = (1 + (energy / ebreak) ** ((index2 - index1) / beta)) ** (-beta) return pwl * brk
[docs] class PiecewiseNormSpectralModel(SpectralModel): """Piecewise spectral correction with a free normalization at each fixed energy nodes. For more information see :ref:`piecewise-norm-spectral`. Parameters ---------- energy : `~astropy.units.Quantity` Array of energies at which the model values are given (nodes). norms : `~numpy.ndarray` or list of `Parameter` Array with the initial norms of the model at energies ``energy``. Normalisation parameters are created for each value. Default is one at each node. interp : str Interpolation scaling in {"log", "lin"}. Default is "log". """ tag = ["PiecewiseNormSpectralModel", "piecewise-norm"] def __init__(self, energy, norms=None, interp="log"): self._energy = energy self._interp = interp if norms is None: norms = np.ones(len(energy)) if len(norms) != len(energy): raise ValueError("dimension mismatch") if len(norms) < 2: raise ValueError("Input arrays must contain at least 2 elements") parameters_list = [] if not isinstance(norms[0], Parameter): parameters_list += [ Parameter(f"norm_{k}", norm) for k, norm in enumerate(norms) ] else: parameters_list += norms self.default_parameters = Parameters(parameters_list) super().__init__() @property def energy(self): """Energy nodes.""" return self._energy @property def norms(self): """Norm values""" return u.Quantity([p.value for p in self.parameters])
[docs] def evaluate(self, energy, **norms): scale = interpolation_scale(scale=self._interp) e_eval = scale(np.atleast_1d(energy.value)) e_nodes = scale(self.energy.to(energy.unit).value) v_nodes = scale(self.norms) log_interp = scale.inverse(np.interp(e_eval, e_nodes, v_nodes)) return log_interp
[docs] def to_dict(self, full_output=False): data = super().to_dict(full_output=full_output) data["spectral"]["energy"] = { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), } data["spectral"]["interp"] = self._interp return data
[docs] @classmethod def from_dict(cls, data, **kwargs): """Create model from dictionary.""" data = data["spectral"] energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) parameters = Parameters.from_dict(data["parameters"]) if "interp" in data: return cls.from_parameters(parameters, energy=energy, interp=data["interp"]) else: return cls.from_parameters(parameters, energy=energy)
[docs] @classmethod def from_parameters(cls, parameters, **kwargs): """Create model from parameters.""" return cls(norms=parameters, **kwargs)
[docs] class ExpCutoffPowerLawSpectralModel(SpectralModel): r"""Spectral exponential cutoff power-law model. For more information see :ref:`exp-cutoff-powerlaw-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma`. Default is 1.5. amplitude : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1e-12 cm-2 s-1 TeV-1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 1 TeV. lambda_ : `~astropy.units.Quantity` :math:`\lambda`. Default is 0.1 TeV-1. alpha : `~astropy.units.Quantity` :math:`\alpha`. Default is 1. See Also -------- ExpCutoffPowerLawNormSpectralModel """ tag = ["ExpCutoffPowerLawSpectralModel", "ecpl"] index = Parameter("index", 1.5) amplitude = Parameter( name="amplitude", value="1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log", ) reference = Parameter("reference", "1 TeV", frozen=True) lambda_ = Parameter("lambda_", "0.1 TeV-1") alpha = Parameter("alpha", "1.0", frozen=True)
[docs] @staticmethod def evaluate(energy, index, amplitude, reference, lambda_, alpha): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index) cutoff = np.exp(-np.power(energy * lambda_, alpha)) return pwl * cutoff
@property def e_peak(self): r"""Spectral energy distribution peak energy (`~astropy.units.Quantity`). This is the peak in E^2 x dN/dE and is given by: .. math:: E_{Peak} = \left(\frac{2 - \Gamma}{\alpha}\right)^{1/\alpha} / \lambda """ reference = self.reference.quantity index = self.index.quantity lambda_ = self.lambda_.quantity alpha = self.alpha.quantity if index >= 2 or lambda_ == 0.0 or alpha == 0.0: return np.nan * reference.unit else: return np.power((2 - index) / alpha, 1 / alpha) / lambda_
[docs] class ExpCutoffPowerLawNormSpectralModel(SpectralModel): r"""Norm spectral exponential cutoff power-law model. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma`. Default is 0. norm : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 1 TeV. lambda_ : `~astropy.units.Quantity` :math:`\lambda`. Default is 0.1 TeV-1. alpha : `~astropy.units.Quantity` :math:`\alpha`. Default is 1. See Also -------- ExpCutoffPowerLawSpectralModel """ tag = ["ExpCutoffPowerLawNormSpectralModel", "ecpl-norm"] index = Parameter("index", 0.0) norm = Parameter("norm", 1, unit="", interp="log") reference = Parameter("reference", "1 TeV", frozen=True) lambda_ = Parameter("lambda_", "0.1 TeV-1") alpha = Parameter("alpha", "1.0", frozen=True) def __init__( self, index=None, norm=None, reference=None, lambda_=None, alpha=None, **kwargs ): if norm is not None: kwargs.update({"norm": norm}) if index is not None: kwargs.update({"index": index}) if reference is not None: kwargs.update({"reference": reference}) if lambda_ is not None: kwargs.update({"lambda_": lambda_}) if alpha is not None: kwargs.update({"alpha": alpha}) super().__init__(**kwargs)
[docs] @staticmethod def evaluate(energy, index, norm, reference, lambda_, alpha): """Evaluate the model (static function).""" pwl = norm * (energy / reference) ** (-index) cutoff = np.exp(-np.power(energy * lambda_, alpha)) return pwl * cutoff
[docs] class ExpCutoffPowerLaw3FGLSpectralModel(SpectralModel): r"""Spectral exponential cutoff power-law model used for 3FGL. For more information see :ref:`exp-cutoff-powerlaw-3fgl-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma`. Default is 1.5. amplitude : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1e-12 cm-2 s-1 TeV-1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 1 TeV. ecut : `~astropy.units.Quantity` :math:`E_{C}`. Default is 10 TeV. """ tag = ["ExpCutoffPowerLaw3FGLSpectralModel", "ecpl-3fgl"] index = Parameter("index", 1.5) amplitude = Parameter( "amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log", ) reference = Parameter("reference", "1 TeV", frozen=True) ecut = Parameter("ecut", "10 TeV")
[docs] @staticmethod def evaluate(energy, index, amplitude, reference, ecut): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index) cutoff = np.exp((reference - energy) / ecut) return pwl * cutoff
[docs] class SuperExpCutoffPowerLaw3FGLSpectralModel(SpectralModel): r"""Spectral super exponential cutoff power-law model used for 3FGL. For more information see :ref:`super-exp-cutoff-powerlaw-3fgl-spectral-model`. .. math:: \phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma_1} \exp \left( \left(\frac{E_0}{E_{C}} \right)^{\Gamma_2} - \left(\frac{E}{E_{C}} \right)^{\Gamma_2} \right) Parameters ---------- amplitude : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1e-12 cm-2 s-1 TeV-1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 1 TeV. ecut : `~astropy.units.Quantity` :math:`E_{C}`. Default is 10 TeV. index_1 : `~astropy.units.Quantity` :math:`\Gamma_1`. Default is 1.5. index_2 : `~astropy.units.Quantity` :math:`\Gamma_2`. Default is 2. """ tag = ["SuperExpCutoffPowerLaw3FGLSpectralModel", "secpl-3fgl"] amplitude = Parameter( "amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log", ) reference = Parameter("reference", "1 TeV", frozen=True) ecut = Parameter("ecut", "10 TeV") index_1 = Parameter("index_1", 1.5) index_2 = Parameter("index_2", 2)
[docs] @staticmethod def evaluate(energy, amplitude, reference, ecut, index_1, index_2): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index_1) cutoff = np.exp((reference / ecut) ** index_2 - (energy / ecut) ** index_2) return pwl * cutoff
[docs] class SuperExpCutoffPowerLaw4FGLSpectralModel(SpectralModel): r"""Spectral super exponential cutoff power-law model used for 4FGL-DR1 (and DR2). See equation (4) of https://arxiv.org/pdf/1902.10045.pdf For more information see :ref:`super-exp-cutoff-powerlaw-4fgl-spectral-model`. Parameters ---------- amplitude : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1e-12 cm-2 s-1 TeV-1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 1 TeV. expfactor : `~astropy.units.Quantity` :math:`a`, given as dimensionless value but internally assumes unit of :math:`{\rm MeV}^{-\Gamma_2}`. Default is 1e-14. index_1 : `~astropy.units.Quantity` :math:`\Gamma_1`. Default is 1.5. index_2 : `~astropy.units.Quantity` :math:`\Gamma_2`. Default is 2. """ tag = ["SuperExpCutoffPowerLaw4FGLSpectralModel", "secpl-4fgl"] amplitude = Parameter( "amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log", ) reference = Parameter("reference", "1 TeV", frozen=True) expfactor = Parameter("expfactor", "1e-14") index_1 = Parameter("index_1", 1.5) index_2 = Parameter("index_2", 2)
[docs] @staticmethod def evaluate(energy, amplitude, reference, expfactor, index_1, index_2): """Evaluate the model (static function).""" if isinstance(index_1, u.Quantity): index_1 = index_1.to_value(u.one) if isinstance(index_2, u.Quantity): index_2 = index_2.to_value(u.one) pwl = amplitude * (energy / reference) ** (-index_1) cutoff = np.exp( expfactor / u.MeV**index_2 * (reference**index_2 - energy**index_2) ) return pwl * cutoff
[docs] class SuperExpCutoffPowerLaw4FGLDR3SpectralModel(SpectralModel): r"""Spectral super exponential cutoff power-law model used for 4FGL-DR3. See equations (2) and (3) of https://arxiv.org/pdf/2201.11184.pdf For more information see :ref:`super-exp-cutoff-powerlaw-4fgl-dr3-spectral-model`. Parameters ---------- amplitude : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1e-12 cm-2 s-1 TeV-1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 1 TeV. expfactor : `~astropy.units.Quantity` :math:`a`, given as dimensionless value. Default is 1e-2. index_1 : `~astropy.units.Quantity` :math:`\Gamma_1`. Default is 1.5. index_2 : `~astropy.units.Quantity` :math:`\Gamma_2`. Default is 2. """ tag = ["SuperExpCutoffPowerLaw4FGLDR3SpectralModel", "secpl-4fgl-dr3"] amplitude = Parameter( name="amplitude", value="1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log", ) reference = Parameter("reference", "1 TeV", frozen=True) expfactor = Parameter("expfactor", "1e-2") index_1 = Parameter("index_1", 1.5) index_2 = Parameter("index_2", 2)
[docs] @staticmethod def evaluate(energy, amplitude, reference, expfactor, index_1, index_2): """Evaluate the model (static function).""" # https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html#PLSuperExpCutoff4 pwl = amplitude * (energy / reference) ** (-index_1) cutoff = (energy / reference) ** (expfactor / index_2) * np.exp( expfactor / index_2**2 * (1 - (energy / reference) ** index_2) ) mask = np.abs(index_2 * np.log(energy / reference)) < 1e-2 ln_ = np.log(energy[mask] / reference) power = -expfactor * ( ln_ / 2.0 + index_2 / 6.0 * ln_**2.0 + index_2**2.0 / 24.0 * ln_**3 ) cutoff[mask] = (energy[mask] / reference) ** power return pwl * cutoff
@property def e_peak(self): r"""Spectral energy distribution peak energy (`~astropy.units.Quantity`). This is the peak in E^2 x dN/dE and is given by Eq. 21 of https://iopscience.iop.org/article/10.3847/1538-4357/acee67: .. math:: E_{Peak} = E_{0} \left[1+\frac{\Gamma_2}{a}(2 - \Gamma_1)\right]^{\frac{1}{\Gamma_2}} """ reference = self.reference.quantity index_1 = self.index_1.quantity index_2 = self.index_2.quantity expfactor = self.expfactor.quantity index_0 = index_1 - expfactor / index_2 if ( ((index_2 < 0) and (index_0 < 2)) or (expfactor <= 0) or ((index_2 > 0) and (index_0 >= 2)) ): return np.nan * reference.unit return reference * (1 + (index_2 / expfactor) * (2 - index_1)) ** (1 / index_2)
[docs] class LogParabolaSpectralModel(SpectralModel): r"""Spectral log parabola model. For more information see :ref:`logparabola-spectral-model`. Parameters ---------- amplitude : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1e-12 cm-2 s-1 TeV-1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 10 TeV. alpha : `~astropy.units.Quantity` :math:`\alpha`. Default is 2. beta : `~astropy.units.Quantity` :math:`\beta`. Default is 1. See Also -------- LogParabolaNormSpectralModel """ tag = ["LogParabolaSpectralModel", "lp"] amplitude = Parameter( "amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log", ) reference = Parameter("reference", "10 TeV", frozen=True) alpha = Parameter("alpha", 2) beta = Parameter("beta", 1)
[docs] @classmethod def from_log10(cls, amplitude, reference, alpha, beta): """Construct from :math:`log_{10}` parametrization.""" beta_ = beta / np.log(10) return cls(amplitude=amplitude, reference=reference, alpha=alpha, beta=beta_)
[docs] @staticmethod def evaluate(energy, amplitude, reference, alpha, beta): """Evaluate the model (static function).""" xx = energy / reference exponent = -alpha - beta * np.log(xx) return amplitude * np.power(xx, exponent)
@property def e_peak(self): r"""Spectral energy distribution peak energy (`~astropy.units.Quantity`). This is the peak in E^2 x dN/dE and is given by: .. math:: E_{Peak} = E_{0} \exp{ (2 - \alpha) / (2 * \beta)} """ reference = self.reference.quantity alpha = self.alpha.quantity beta = self.beta.quantity return reference * np.exp((2 - alpha) / (2 * beta))
[docs] class LogParabolaNormSpectralModel(SpectralModel): r"""Norm spectral log parabola model. Parameters ---------- norm : `~astropy.units.Quantity` :math:`\phi_0`. Default is 1. reference : `~astropy.units.Quantity` :math:`E_0`. Default is 10 TeV. alpha : `~astropy.units.Quantity` :math:`\alpha`. Default is 0. beta : `~astropy.units.Quantity` :math:`\beta`. Default is 0. See Also -------- LogParabolaSpectralModel """ tag = ["LogParabolaNormSpectralModel", "lp-norm"] norm = Parameter("norm", 1, unit="", interp="log") reference = Parameter("reference", "10 TeV", frozen=True) alpha = Parameter("alpha", 0) beta = Parameter("beta", 0)
[docs] @classmethod def from_log10(cls, norm, reference, alpha, beta): """Construct from :math:`log_{10}` parametrization.""" beta_ = beta / np.log(10) return cls(norm=norm, reference=reference, alpha=alpha, beta=beta_)
[docs] @staticmethod def evaluate(energy, norm, reference, alpha, beta): """Evaluate the model (static function).""" xx = energy / reference exponent = -alpha - beta * np.log(xx) return norm * np.power(xx, exponent)
[docs] class TemplateSpectralModel(SpectralModel): """A model generated from a table of energy and value arrays. For more information see :ref:`template-spectral-model`. Parameters ---------- energy : `~astropy.units.Quantity` Array of energies at which the model values are given values : `~numpy.ndarray` Array with the values of the model at energies ``energy``. interp_kwargs : dict Interpolation option passed to `~gammapy.utils.interpolation.ScaledRegularGridInterpolator`. By default, all values outside the interpolation range are set to NaN. If you want to apply linear extrapolation you can pass `interp_kwargs={'extrapolate': True, 'method': 'linear'}`. If you want to choose the interpolation scaling applied to values, you can use `interp_kwargs={"values_scale": "log"}`. meta : dict, optional Meta information, meta['filename'] will be used for serialisation. """ tag = ["TemplateSpectralModel", "template"] def __init__( self, energy, values, interp_kwargs=None, meta=None, ): self.energy = energy self.values = u.Quantity(values, copy=COPY_IF_NEEDED) self.meta = {} if meta is None else meta interp_kwargs = interp_kwargs or {} interp_kwargs.setdefault("values_scale", "log") interp_kwargs.setdefault("points_scale", ("log",)) if len(energy) == 1: interp_kwargs["method"] = "nearest" self._evaluate = ScaledRegularGridInterpolator( points=(energy,), values=values, **interp_kwargs ) super().__init__()
[docs] @classmethod def read_xspec_model(cls, filename, param, **kwargs): """Read XSPEC table model. The input is a table containing absorbed values from a XSPEC model as a function of energy. TODO: Format of the file should be described and discussed in https://gamma-astro-data-formats.readthedocs.io/en/latest/index.html Parameters ---------- filename : str File containing the XSPEC model. param : float Model parameter value. Examples -------- Fill table from an EBL model (Franceschini, 2008) >>> from gammapy.modeling.models import TemplateSpectralModel >>> filename = '$GAMMAPY_DATA/ebl/ebl_franceschini.fits.gz' >>> table_model = TemplateSpectralModel.read_xspec_model(filename=filename, param=0.3) """ filename = make_path(filename) # Check if parameter value is in range table_param = Table.read(filename, hdu="PARAMETERS") pmin = table_param["MINIMUM"] pmax = table_param["MAXIMUM"] if param < pmin or param > pmax: raise ValueError(f"Out of range: param={param}, min={pmin}, max={pmax}") # Get energy values table_energy = Table.read(filename, hdu="ENERGIES") energy_lo = table_energy["ENERG_LO"] energy_hi = table_energy["ENERG_HI"] # set energy to log-centers energy = np.sqrt(energy_lo * energy_hi) # Get spectrum values (no interpolation, take closest value for param) table_spectra = Table.read(filename, hdu="SPECTRA") idx = np.abs(table_spectra["PARAMVAL"] - param).argmin() values = u.Quantity( table_spectra[idx][1], "", copy=COPY_IF_NEEDED ) # no dimension kwargs.setdefault("interp_kwargs", {"values_scale": "lin"}) return cls(energy=energy, values=values, **kwargs)
[docs] def evaluate(self, energy): """Evaluate the model (static function).""" return self._evaluate((energy,), clip=True)
[docs] def to_dict(self, full_output=False): data = super().to_dict(full_output) data["spectral"]["energy"] = { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), } data["spectral"]["values"] = { "data": self.values.data.tolist(), "unit": str(self.values.unit), } return data
[docs] @classmethod def from_dict(cls, data, **kwargs): data = data["spectral"] energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) values = u.Quantity(data["values"]["data"], data["values"]["unit"]) return cls(energy=energy, values=values)
[docs] @classmethod def from_region_map(cls, map, **kwargs): """Create model from region map.""" energy = map.geom.axes["energy_true"].center values = map.quantity[:, 0, 0] return cls(energy=energy, values=values, **kwargs)
[docs] class TemplateNDSpectralModel(SpectralModel): """A model generated from a ND map where extra dimensions define the parameter space. Parameters ---------- map : `~gammapy.maps.RegionNDMap` Map template. meta : dict, optional Meta information, meta['filename'] will be used for serialisation. interp_kwargs : dict Interpolation keyword arguments passed to `gammapy.maps.Map.interp_by_pix`. Default arguments are {'method': 'linear', 'fill_value': 0}. """ tag = ["TemplateNDSpectralModel", "templateND"] def __init__(self, map, interp_kwargs=None, meta=None, filename=None): self._map = map.copy() self.meta = dict() if meta is None else meta if filename is not None: filename = str(make_path(filename)) if filename is None: log.warning( "The filename is not defined. Therefore, the model will not be serialised correctly. " 'To set the filename, the "template_model.filename" attribute can be used.' ) self.filename = filename parameters = [] has_energy = False for axis in map.geom.axes: if axis.name not in ["energy_true", "energy"]: unit = axis.unit center = (axis.bounds[1] + axis.bounds[0]) / 2 parameter = Parameter( name=axis.name, value=center.to_value(unit), unit=unit, scale_method="scale10", min=axis.bounds[0].to_value(unit), max=axis.bounds[-1].to_value(unit), interp=axis.interp, ) parameters.append(parameter) else: has_energy |= True if not has_energy: raise ValueError("Invalid map, no energy axis found") self.default_parameters = Parameters(parameters) interp_kwargs = interp_kwargs or {} interp_kwargs.setdefault("values_scale", "log") self._interp_kwargs = interp_kwargs super().__init__() @property def map(self): """Template map as a `~gammapy.maps.RegionNDMap`.""" return self._map
[docs] def evaluate(self, energy, **kwargs): coord = {"energy_true": energy} coord.update(kwargs) pixels = [0, 0] + [ self.map.geom.axes[key].coord_to_pix(value) for key, value in coord.items() ] val = self.map.interp_by_pix(pixels, **self._interp_kwargs) return u.Quantity(val, self.map.unit, copy=COPY_IF_NEEDED)
[docs] def write(self, overwrite=False, filename=None): """ Write the map. Parameters ---------- overwrite: bool, optional Overwrite existing file. Default is False, which will raise a warning if the template file exists already. filename : str, optional Filename of the template model. By default, the template model will be saved with the `TemplateNDSpectralModel.filename` attribute. If `filename` is provided, this attribute will be used. """ if filename is not None: self.filename = filename if self.filename is None: raise IOError("Missing filename") elif os.path.isfile(self.filename) and not overwrite: log.warning("Template file already exits, and overwrite is False") else: self.map.write(self.filename)
[docs] @classmethod def from_dict(cls, data, **kwargs): data = data["spectral"] filename = data["filename"] m = RegionNDMap.read(filename) model = cls(m, filename=filename) for idx, p in enumerate(model.parameters): par = p.to_dict() par.update(data["parameters"][idx]) setattr(model, p.name, Parameter(**par)) return model
[docs] def to_dict(self, full_output=False): """Create dictionary for YAML serilisation.""" data = super().to_dict(full_output) data["spectral"]["filename"] = self.filename data["spectral"]["unit"] = str(self.map.unit) return data
[docs] class ScaleSpectralModel(SpectralModel): """Wrapper to scale another spectral model by a norm factor. Parameters ---------- model : `SpectralModel` Spectral model to wrap. norm : float Multiplicative norm factor for the model value. Default is 1. """ tag = ["ScaleSpectralModel", "scale"] norm = Parameter("norm", 1, unit="", interp="log") def __init__(self, model, norm=norm.quantity): self.model = model self._covariance = None super().__init__(norm=norm)
[docs] def evaluate(self, energy, norm): return norm * self.model(energy)
[docs] def integral(self, energy_min, energy_max, **kwargs): return self.norm.value * self.model.integral(energy_min, energy_max, **kwargs)
[docs] class EBLAbsorptionNormSpectralModel(SpectralModel): r"""Gamma-ray absorption models. For more information see :ref:`absorption-spectral-model`. Parameters ---------- energy : `~astropy.units.Quantity` Energy node values. param : `~astropy.units.Quantity` Parameter node values. data : `~astropy.units.Quantity` Model value. redshift : float Redshift of the absorption model. Default is 0.1. alpha_norm: float Norm of the EBL model. Default is 1. interp_kwargs : dict Interpolation option passed to `~gammapy.utils.interpolation.ScaledRegularGridInterpolator`. By default the models are extrapolated outside the range. To prevent this and raise an error instead use interp_kwargs = {"extrapolate": False}. """ tag = ["EBLAbsorptionNormSpectralModel", "ebl-norm"] redshift = Parameter("redshift", 0.1, frozen=True) alpha_norm = Parameter("alpha_norm", 1.0, frozen=True) def __init__(self, energy, param, data, redshift, alpha_norm, interp_kwargs=None): self.filename = None # set values log centers self.param = param self.energy = energy self.data = u.Quantity(data, copy=COPY_IF_NEEDED) interp_kwargs = interp_kwargs or {} interp_kwargs.setdefault("points_scale", ("lin", "log")) interp_kwargs.setdefault("values_scale", "log") interp_kwargs.setdefault("extrapolate", True) self._evaluate_table_model = ScaledRegularGridInterpolator( points=(self.param, self.energy), values=self.data, **interp_kwargs ) super().__init__(redshift=redshift, alpha_norm=alpha_norm)
[docs] def to_dict(self, full_output=False): data = super().to_dict(full_output=full_output) param = u.Quantity(self.param) if self.filename is None: data["spectral"]["energy"] = { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), } data["spectral"]["param"] = { "data": param.data.tolist(), "unit": str(param.unit), } data["spectral"]["values"] = { "data": self.data.value.tolist(), "unit": str(self.data.unit), } else: data["spectral"]["filename"] = str(self.filename) return data
[docs] @classmethod def from_dict(cls, data, **kwargs): data = data["spectral"] redshift = [p["value"] for p in data["parameters"] if p["name"] == "redshift"][ 0 ] alpha_norm = [ p["value"] for p in data["parameters"] if p["name"] == "alpha_norm" ][0] if "filename" in data: if os.path.exists(data["filename"]): return cls.read( data["filename"], redshift=redshift, alpha_norm=alpha_norm ) else: for reference, filename in EBL_DATA_BUILTIN.items(): if Path(filename).stem in data["filename"]: return cls.read_builtin( reference, redshift=redshift, alpha_norm=alpha_norm ) raise IOError(f'File {data["filename"]} not found') else: energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) param = u.Quantity(data["param"]["data"], data["param"]["unit"]) values = u.Quantity(data["values"]["data"], data["values"]["unit"]) return cls( energy=energy, param=param, data=values, redshift=redshift, alpha_norm=alpha_norm, )
[docs] @classmethod def read(cls, filename, redshift=0.1, alpha_norm=1, interp_kwargs=None): """Build object from an XSPEC model. Parameters ---------- filename : str File containing the model. redshift : float, optional Redshift of the absorption model. Default is 0.1. alpha_norm: float, optional Norm of the EBL model. Default is 1. interp_kwargs : dict, optional Interpolation option passed to `~gammapy.utils.interpolation.ScaledRegularGridInterpolator`. Default is None. """ # Create EBL data array filename = make_path(filename) table_param = Table.read(filename, hdu="PARAMETERS") # TODO: for some reason the table contain duplicated values param, idx = np.unique(table_param[0]["VALUE"], return_index=True) # Get energy values table_energy = Table.read(filename, hdu="ENERGIES") energy_lo = u.Quantity( table_energy["ENERG_LO"], "keV", copy=COPY_IF_NEEDED ) # unit not stored in file energy_hi = u.Quantity( table_energy["ENERG_HI"], "keV", copy=COPY_IF_NEEDED ) # unit not stored in file energy = np.sqrt(energy_lo * energy_hi) # Get spectrum values table_spectra = Table.read(filename, hdu="SPECTRA") data = table_spectra["INTPSPEC"].data[idx, :] model = cls( energy=energy, param=param, data=data, redshift=redshift, alpha_norm=alpha_norm, interp_kwargs=interp_kwargs, ) model.filename = filename return model
[docs] @classmethod def read_builtin( cls, reference="dominguez", redshift=0.1, alpha_norm=1, interp_kwargs=None ): """Read from one of the built-in absorption models. Parameters ---------- reference : {'franceschini', 'dominguez', 'finke'}, optional Name of one of the available model in gammapy-data. Default is 'dominquez'. redshift : float, optional Redshift of the absorption model. Default is 0.1. alpha_norm : float, optional Norm of the EBL model. Default is 1. interp_kwargs : dict, optional Interpolation keyword arguments. Default is None. References ---------- * `Franceschini et al. (2008), "Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity" <https://ui.adsabs.harvard.edu/abs/2008A%26A...487..837F>`_ * `Dominguez et al. (2011), " Extragalactic background light inferred from AEGIS galaxy-SED-type fractions" <https://ui.adsabs.harvard.edu/abs/2011MNRAS.410.2556D>`_ * `Finke et al. (2010), "Modeling the Extragalactic Background Light from Stars and Dust" <https://ui.adsabs.harvard.edu/abs/2010ApJ...712..238F>`_ * `Franceschini et al. (2017), "The extragalactic background light revisited and the cosmic photon-photon opacity" <https://ui.adsabs.harvard.edu/abs/2017A%26A...603A..34F/abstract>`_ * `Saldana-Lopez et al. (2021), "An observational determination of the evolving extragalactic background light from the multiwavelength HST/CANDELS survey in the Fermi and CTA era" <https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.5144S/abstract>`_ """ return cls.read( EBL_DATA_BUILTIN[reference], redshift, alpha_norm, interp_kwargs=interp_kwargs, )
[docs] def evaluate(self, energy, redshift, alpha_norm): """Evaluate model for energy and parameter value.""" absorption = np.clip(self._evaluate_table_model((redshift, energy)), 0, 1) return np.power(absorption, alpha_norm)
[docs] class NaimaSpectralModel(SpectralModel): r"""A wrapper for Naima models. For more information see :ref:`naima-spectral-model`. Parameters ---------- radiative_model : `~naima.models.BaseRadiative` An instance of a radiative model defined in `~naima.models`. distance : `~astropy.units.Quantity`, optional Distance to the source. If set to 0, the intrinsic differential luminosity will be returned. Default is 1 kpc. seed : str or list of str, optional Seed photon field(s) to be considered for the `radiative_model` flux computation, in case of a `~naima.models.InverseCompton` model. It can be a subset of the `seed_photon_fields` list defining the `radiative_model`. Default is the whole list of photon fields. nested_models : dict Additional parameters for nested models not supplied by the radiative model, for now this is used only for synchrotron self-compton model. """ tag = ["NaimaSpectralModel", "naima"] def __init__( self, radiative_model, distance=1.0 * u.kpc, seed=None, nested_models=None, use_cache=False, ): import naima self.radiative_model = radiative_model self.radiative_model._memoize = use_cache self.distance = u.Quantity(distance) self.seed = seed if nested_models is None: nested_models = {} self.nested_models = nested_models if isinstance(self.particle_distribution, naima.models.TableModel): param_names = ["amplitude"] else: param_names = self.particle_distribution.param_names parameters = [] for name in param_names: value = getattr(self.particle_distribution, name) parameter = Parameter(name, value) parameters.append(parameter) # In case of a synchrotron radiative model, append B to the fittable parameters if "B" in self.radiative_model.param_names: value = getattr(self.radiative_model, "B") parameter = Parameter("B", value) parameters.append(parameter) # In case of a synchrotron self compton model, append B and Rpwn to the fittable parameters if self.include_ssc: B = self.nested_models["SSC"]["B"] radius = self.nested_models["SSC"]["radius"] parameters.append(Parameter("B", B)) parameters.append(Parameter("radius", radius, frozen=True)) self.default_parameters = Parameters(parameters) self.ssc_energy = np.logspace(-7, 9, 100) * u.eV super().__init__() @property def include_ssc(self): """Whether the model includes an SSC component.""" import naima is_ic_model = isinstance(self.radiative_model, naima.models.InverseCompton) return is_ic_model and "SSC" in self.nested_models @property def ssc_model(self): """Synchrotron model.""" import naima if self.include_ssc: return naima.models.Synchrotron( self.particle_distribution, B=self.B.quantity, Eemax=self.radiative_model.Eemax, Eemin=self.radiative_model.Eemin, ) @property def particle_distribution(self): """Particle distribution.""" return self.radiative_model.particle_distribution def _evaluate_ssc( self, energy, ): """ Compute photon density spectrum from synchrotron emission for synchrotron self-compton model, assuming uniform synchrotron emissivity inside a sphere of radius R (see Section 4.1 of Atoyan & Aharonian 1996). Based on : https://naima.readthedocs.io/en/latest/examples.html#crab-nebula-ssc-model """ Lsy = self.ssc_model.flux( self.ssc_energy, distance=0 * u.cm ) # use distance 0 to get luminosity phn_sy = Lsy / (4 * np.pi * self.radius.quantity**2 * const.c) * 2.24 # The factor 2.24 comes from the assumption on uniform synchrotron # emissivity inside a sphere if "SSC" not in self.radiative_model.seed_photon_fields: self.radiative_model.seed_photon_fields["SSC"] = { "isotropic": True, "type": "array", "energy": self.ssc_energy, "photon_density": phn_sy, } else: self.radiative_model.seed_photon_fields["SSC"]["photon_density"] = phn_sy dnde = self.radiative_model.flux( energy, seed=self.seed, distance=self.distance ) + self.ssc_model.flux(energy, distance=self.distance) return dnde def _update_naima_parameters(self, **kwargs): """Update Naima model parameters.""" for name, value in kwargs.items(): setattr(self.particle_distribution, name, value) if "B" in self.radiative_model.param_names: self.radiative_model.B = self.B.quantity
[docs] def evaluate(self, energy, **kwargs): """Evaluate the model. Parameters ---------- energy : `~astropy.units.Quantity` Energy to evaluate the model at. Returns ------- dnde : `~astropy.units.Quantity` Differential flux at given energy. """ self._update_naima_parameters(**kwargs) if self.include_ssc: dnde = self._evaluate_ssc(energy.flatten()) elif self.seed is not None: dnde = self.radiative_model.flux( energy.flatten(), seed=self.seed, distance=self.distance ) else: dnde = self.radiative_model.flux(energy.flatten(), distance=self.distance) dnde = dnde.reshape(energy.shape) unit = 1 / (energy.unit * u.cm**2 * u.s) return dnde.to(unit)
[docs] def to_dict(self, full_output=True): # for full_output to True otherwise broken return super().to_dict(full_output=True)
[docs] @classmethod def from_dict(cls, data, **kwargs): raise NotImplementedError( "Currently the NaimaSpectralModel cannot be read from YAML" )
[docs] @classmethod def from_parameters(cls, parameters, **kwargs): raise NotImplementedError( "Currently the NaimaSpectralModel cannot be built from a list of parameters." )
[docs] class GaussianSpectralModel(SpectralModel): r"""Gaussian spectral model. For more information see :ref:`gaussian-spectral-model`. Parameters ---------- amplitude : `~astropy.units.Quantity` :math:`N_0`. Default is 1e-12 cm-2 s-1. mean : `~astropy.units.Quantity` :math:`\bar{E}`. Default is 1 TeV. sigma : `~astropy.units.Quantity` :math:`\sigma`. Default is 2 TeV. """ tag = ["GaussianSpectralModel", "gauss"] amplitude = Parameter("amplitude", 1e-12 * u.Unit("cm-2 s-1"), interp="log") mean = Parameter("mean", 1 * u.TeV) sigma = Parameter("sigma", 2 * u.TeV)
[docs] @staticmethod def evaluate(energy, amplitude, mean, sigma): return ( amplitude / (sigma * np.sqrt(2 * np.pi)) * np.exp(-((energy - mean) ** 2) / (2 * sigma**2)) )
[docs] def integral(self, energy_min, energy_max, **kwargs): r"""Integrate Gaussian analytically. .. math:: F(E_{min}, E_{max}) = \frac{N_0}{2} \left[ erf(\frac{E - \bar{E}}{\sqrt{2} \sigma})\right]_{E_{min}}^{E_{max}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range """ # noqa: E501 # kwargs are passed to this function but not used # this is to get a consistent API with SpectralModel.integral() u_min = ( (energy_min - self.mean.quantity) / (np.sqrt(2) * self.sigma.quantity) ).to_value("") u_max = ( (energy_max - self.mean.quantity) / (np.sqrt(2) * self.sigma.quantity) ).to_value("") return ( self.amplitude.quantity / 2 * (scipy.special.erf(u_max) - scipy.special.erf(u_min)) )
[docs] def energy_flux(self, energy_min, energy_max): r"""Compute energy flux in given energy range analytically. .. math:: G(E_{min}, E_{max}) = \frac{N_0 \sigma}{\sqrt{2*\pi}}* \left[ - \exp(\frac{E_{min}-\bar{E}}{\sqrt{2} \sigma}) \right]_{E_{min}}^{E_{max}} + \frac{N_0 * \bar{E}}{2} \left[ erf(\frac{E - \bar{E}}{\sqrt{2} \sigma}) \right]_{E_{min}}^{E_{max}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. """ # noqa: E501 u_min = ( (energy_min - self.mean.quantity) / (np.sqrt(2) * self.sigma.quantity) ).to_value("") u_max = ( (energy_max - self.mean.quantity) / (np.sqrt(2) * self.sigma.quantity) ).to_value("") a = self.amplitude.quantity * self.sigma.quantity / np.sqrt(2 * np.pi) b = self.amplitude.quantity * self.mean.quantity / 2 return a * (np.exp(-(u_min**2)) - np.exp(-(u_max**2))) + b * ( scipy.special.erf(u_max) - scipy.special.erf(u_min) )