PowerLawNormSpectralModel#

class gammapy.modeling.models.PowerLawNormSpectralModel[source]#

Bases: SpectralModel

Spectral power-law model with normalized amplitude parameter.

Parameters:
tiltQuantity

\(\Gamma\). Default is 0.

normQuantity

\(\phi_0\). Default is 1.

referenceQuantity

\(E_0\). Default is 1 TeV.

Attributes Summary

default_parameters

norm

A model parameter.

pivot_energy

The pivot or decorrelation energy is defined as:

reference

A model parameter.

tag

tilt

A model parameter.

Methods Summary

evaluate(energy, tilt, norm, reference)

Evaluate the model (static function).

evaluate_energy_flux(energy_min, energy_max, ...)

Evaluate the energy flux (static function).

evaluate_integral(energy_min, energy_max, ...)

Evaluate powerlaw integral.

inverse(value, *args)

Return energy for a given function value of the spectral model.

Attributes Documentation

default_parameters = <gammapy.modeling.parameter.Parameters object>#
norm#

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters:
namestr

Name.

valuefloat or Quantity

Value.

scalefloat, optional

Scale (sometimes used in fitting).

unitUnit or str, optional

Unit. Default is “”.

minfloat, str or quantity, optional

Minimum (sometimes used in fitting). If None, set to numpy.nan. Default is None.

maxfloat, str or quantity, optional

Maximum (sometimes used in fitting). Default is numpy.nan.

frozenbool, optional

Frozen (used in fitting). Default is False.

errorfloat, optional

Parameter error. Default is 0.

scan_minfloat, optional

Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_maxfloat, optional

Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_n_values: int, optional

Number of values to be used for the parameter scan. Default is 11.

scan_n_sigmaint, optional

Number of sigmas to scan. Default is 2.

scan_values: `numpy.array`, optional

Scan values. Overwrites all the scan keywords before. Default is None.

scale_method{‘scale10’, ‘factor1’, None}, optional

Method used to set factor and scale. Default is “scale10”.

interp{“lin”, “sqrt”, “log”}, optional

Parameter scaling to use for the scan. Default is “lin”.

priorPrior, optional

Prior set on the parameter. Default is None.

pivot_energy#

The pivot or decorrelation energy is defined as:

\[E_D = E_0 * \exp{cov(\phi_0, \Gamma) / (\phi_0 \Delta \Gamma^2)}\]

Formula (1) in https://arxiv.org/pdf/0910.4881.pdf

Returns:
pivot energyQuantity

If no minimum is found, NaN will be returned.

reference#

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters:
namestr

Name.

valuefloat or Quantity

Value.

scalefloat, optional

Scale (sometimes used in fitting).

unitUnit or str, optional

Unit. Default is “”.

minfloat, str or quantity, optional

Minimum (sometimes used in fitting). If None, set to numpy.nan. Default is None.

maxfloat, str or quantity, optional

Maximum (sometimes used in fitting). Default is numpy.nan.

frozenbool, optional

Frozen (used in fitting). Default is False.

errorfloat, optional

Parameter error. Default is 0.

scan_minfloat, optional

Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_maxfloat, optional

Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_n_values: int, optional

Number of values to be used for the parameter scan. Default is 11.

scan_n_sigmaint, optional

Number of sigmas to scan. Default is 2.

scan_values: `numpy.array`, optional

Scan values. Overwrites all the scan keywords before. Default is None.

scale_method{‘scale10’, ‘factor1’, None}, optional

Method used to set factor and scale. Default is “scale10”.

interp{“lin”, “sqrt”, “log”}, optional

Parameter scaling to use for the scan. Default is “lin”.

priorPrior, optional

Prior set on the parameter. Default is None.

tag = ['PowerLawNormSpectralModel', 'pl-norm']#
tilt#

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters:
namestr

Name.

valuefloat or Quantity

Value.

scalefloat, optional

Scale (sometimes used in fitting).

unitUnit or str, optional

Unit. Default is “”.

minfloat, str or quantity, optional

Minimum (sometimes used in fitting). If None, set to numpy.nan. Default is None.

maxfloat, str or quantity, optional

Maximum (sometimes used in fitting). Default is numpy.nan.

frozenbool, optional

Frozen (used in fitting). Default is False.

errorfloat, optional

Parameter error. Default is 0.

scan_minfloat, optional

Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_maxfloat, optional

Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.

scan_n_values: int, optional

Number of values to be used for the parameter scan. Default is 11.

scan_n_sigmaint, optional

Number of sigmas to scan. Default is 2.

scan_values: `numpy.array`, optional

Scan values. Overwrites all the scan keywords before. Default is None.

scale_method{‘scale10’, ‘factor1’, None}, optional

Method used to set factor and scale. Default is “scale10”.

interp{“lin”, “sqrt”, “log”}, optional

Parameter scaling to use for the scan. Default is “lin”.

priorPrior, optional

Prior set on the parameter. Default is None.

Methods Documentation

static evaluate(energy, tilt, norm, reference)[source]#

Evaluate the model (static function).

static evaluate_energy_flux(energy_min, energy_max, tilt, norm, reference)[source]#

Evaluate the energy flux (static function).

static evaluate_integral(energy_min, energy_max, tilt, norm, reference)[source]#

Evaluate powerlaw integral.

inverse(value, *args)[source]#

Return energy for a given function value of the spectral model.

Parameters:
valueQuantity

Function value of the spectral model.

__init__(**kwargs)#
classmethod __new__(*args, **kwargs)#