EBLAbsorptionNormSpectralModel#
- class gammapy.modeling.models.EBLAbsorptionNormSpectralModel[source]#
Bases:
SpectralModel
Gamma-ray absorption models.
For more information see EBL absorption spectral model.
- Parameters:
- energy
Quantity
Energy node values.
- param
Quantity
Parameter node values.
- data
Quantity
Model value.
- redshiftfloat
Redshift of the absorption model. Default is 0.1.
- alpha_norm: float
Norm of the EBL model. Default is 1.
- interp_kwargsdict
Interpolation option passed to
ScaledRegularGridInterpolator
. By default the models are extrapolated outside the range. To prevent this and raise an error instead use interp_kwargs = {“extrapolate”: False}.
- energy
Attributes Summary
A model parameter.
A model parameter.
Methods Summary
evaluate
(energy, redshift, alpha_norm)Evaluate model for energy and parameter value.
from_dict
(data, **kwargs)read
(filename[, redshift, alpha_norm, ...])Build object from an XSPEC model.
read_builtin
([reference, redshift, ...])Read from one of the built-in absorption models.
to_dict
([full_output])Create dictionary for YAML serialisation.
Attributes Documentation
- alpha_norm#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.- Parameters:
- namestr
Name.
- valuefloat or
Quantity
Value.
- scalefloat, optional
Scale (sometimes used in fitting).
- unit
Unit
or str, optional Unit. Default is “”.
- minfloat, str or
quantity
, optional Minimum (sometimes used in fitting). If
None
, set tonumpy.nan
. Default is None.- maxfloat, str or
quantity
, optional Maximum (sometimes used in fitting). Default is
numpy.nan
.- frozenbool, optional
Frozen (used in fitting). Default is False.
- errorfloat, optional
Parameter error. Default is 0.
- scan_minfloat, optional
Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.
- scan_maxfloat, optional
Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.
- scan_n_values: int, optional
Number of values to be used for the parameter scan. Default is 11.
- scan_n_sigmaint, optional
Number of sigmas to scan. Default is 2.
- scan_values: `numpy.array`, optional
Scan values. Overwrites all the scan keywords before. Default is None.
- scale_method{‘scale10’, ‘factor1’, None}, optional
Method used to set
factor
andscale
. Default is “scale10”.- interp{“lin”, “sqrt”, “log”}, optional
Parameter scaling to use for the scan. Default is “lin”.
- prior
Prior
, optional Prior set on the parameter. Default is None.
- default_parameters = <gammapy.modeling.parameter.Parameters object>#
- redshift#
A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.- Parameters:
- namestr
Name.
- valuefloat or
Quantity
Value.
- scalefloat, optional
Scale (sometimes used in fitting).
- unit
Unit
or str, optional Unit. Default is “”.
- minfloat, str or
quantity
, optional Minimum (sometimes used in fitting). If
None
, set tonumpy.nan
. Default is None.- maxfloat, str or
quantity
, optional Maximum (sometimes used in fitting). Default is
numpy.nan
.- frozenbool, optional
Frozen (used in fitting). Default is False.
- errorfloat, optional
Parameter error. Default is 0.
- scan_minfloat, optional
Minimum value for the parameter scan. Overwrites scan_n_sigma. Default is None.
- scan_maxfloat, optional
Maximum value for the parameter scan. Overwrites scan_n_sigma. Default is None.
- scan_n_values: int, optional
Number of values to be used for the parameter scan. Default is 11.
- scan_n_sigmaint, optional
Number of sigmas to scan. Default is 2.
- scan_values: `numpy.array`, optional
Scan values. Overwrites all the scan keywords before. Default is None.
- scale_method{‘scale10’, ‘factor1’, None}, optional
Method used to set
factor
andscale
. Default is “scale10”.- interp{“lin”, “sqrt”, “log”}, optional
Parameter scaling to use for the scan. Default is “lin”.
- prior
Prior
, optional Prior set on the parameter. Default is None.
- tag = ['EBLAbsorptionNormSpectralModel', 'ebl-norm']#
Methods Documentation
- classmethod read(filename, redshift=0.1, alpha_norm=1, interp_kwargs=None)[source]#
Build object from an XSPEC model.
- Parameters:
- filenamestr
File containing the model.
- redshiftfloat, optional
Redshift of the absorption model. Default is 0.1.
- alpha_norm: float, optional
Norm of the EBL model. Default is 1.
- interp_kwargsdict, optional
Interpolation option passed to
ScaledRegularGridInterpolator
. Default is None.
- classmethod read_builtin(reference='dominguez', redshift=0.1, alpha_norm=1, interp_kwargs=None)[source]#
Read from one of the built-in absorption models.
- Parameters:
- reference{‘franceschini’, ‘dominguez’, ‘finke’}, optional
Name of one of the available model in gammapy-data. Default is ‘dominquez’.
- redshiftfloat, optional
Redshift of the absorption model. Default is 0.1.
- alpha_normfloat, optional
Norm of the EBL model. Default is 1.
- interp_kwargsdict, optional
Interpolation keyword arguments. Default is None.
References
- classmethod __new__(*args, **kwargs)#