Note

You are not reading the most up to date version of Gammapy documentation.
Access the latest stable version v1.3 or the list of Gammapy releases.

Source code for gammapy.spectrum.fit

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging
import copy
import numpy as np
import astropy.units as u
from ..utils.fitting import Fit, Parameters, Dataset
from .. import stats
from ..utils.random import get_random_state
from .core import CountsSpectrum
from .utils import CountsPredictor
from .observation import SpectrumObservationList, SpectrumObservation

__all__ = ["SpectrumFit", "SpectrumDataset"]

log = logging.getLogger(__name__)


[docs]class SpectrumDataset(Dataset): """Compute spectral model fit statistic on a CountsSpectrum. Parameters ---------- model : `~gammapy.spectrum.models.SpectralModel` Fit model counts : `~gammapy.spectrum.CountsSpectrum` Counts spectrum livetime : float Livetime mask : `~numpy.ndarray` Mask to apply to the likelihood. aeff : `~gammapy.irf.EffectiveAreaTable` Effective area edisp : `~gammapy.irf.EnergyDispersion` Energy dispersion background : `~gammapy.spectrum.CountsSpectrum` Background to use for the fit. """ def __init__( self, model, counts=None, livetime=None, mask=None, aeff=None, edisp=None, background=None, ): if mask is not None and mask.dtype != np.dtype("bool"): raise ValueError("mask data must have dtype bool") self.model = model self.counts = counts self.livetime = livetime self.mask = mask self.aeff = aeff self.edisp = edisp self.background = background self.parameters = Parameters(self.model.parameters.parameters) if edisp is None: self.predictor = CountsPredictor( model=self.model, livetime=self.livetime, aeff=self.aeff, e_true=self.counts.energy.bins, ) else: self.predictor = CountsPredictor( model=self.model, aeff=self.aeff, edisp=self.edisp, livetime=self.livetime, ) @property def data_shape(self): """Shape of the counts data""" return self.counts.data.shape
[docs] def npred(self): """Returns npred map (model + background)""" self.predictor.run() model_npred = self.predictor.npred.data.data back_npred = self.background.data.data total_npred = model_npred + back_npred return total_npred
[docs] def likelihood_per_bin(self): """Likelihood per bin given the current model parameters""" return stats.cash(n_on=self.counts.data.data, mu_on=self.npred())
[docs] def likelihood(self, parameters, mask=None): """Total likelihood given the current model parameters. Parameters ---------- mask : `~numpy.ndarray` Mask to be combined with the dataset mask. """ if self.mask is None and mask is None: stat = self.likelihood_per_bin() elif self.mask is None: stat = self.likelihood_per_bin()[mask] elif mask is None: stat = self.likelihood_per_bin()[self.mask] else: stat = self.likelihood_per_bin()[mask & self.mask] return np.sum(stat, dtype=np.float64)
[docs] def fake(self, random_state="random-seed"): """Simulate a fake `~gammapy.spectrum.CountsSpectrum`. Parameters ---------- random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`} Defines random number generator initialisation. Passed to `~gammapy.utils.random.get_random_state`. Returns ------- spectrum : `~gammapy.spectrum.CountsSpectrum` the fake count spectrum """ random_state = get_random_state(random_state) data = random_state.poisson(self.npred()) ebounds = self.counts.energy.bins return CountsSpectrum(ebounds[:-1], ebounds[1:], data)
[docs]class SpectrumFit(Fit): """Orchestrate a 1D counts spectrum fit. After running the :func:`~gammapy.spectrum.SpectrumFit.run` method, the fit results are available in :func:`~gammapy.spectrum.SpectrumFit.result`. For usage examples see :ref:`spectral_fitting` Parameters ---------- obs_list : `~gammapy.spectrum.SpectrumObservationList`, `~gammapy.spectrum.SpectrumObservation` Observation(s) to fit model : `~gammapy.spectrum.models.SpectralModel` Source model with initial parameter values. Should return counts if ``forward_folded`` is False and a flux otherwise stat : {'wstat', 'cash'} Fit statistic forward_folded : bool, default: True Fold ``model`` with the IRFs given in ``obs_list`` fit_range : tuple of `~astropy.units.Quantity` The intersection between the fit range and the observation thresholds will be used. If you want to control which bins are taken into account in the fit for each observation, use :func:`~gammapy.spectrum.PHACountsSpectrum.quality` """ def __init__( self, obs_list, model, stat="wstat", forward_folded=True, fit_range=None ): self.obs_list = obs_list self._model = model self.stat = stat self.forward_folded = forward_folded self.fit_range = fit_range self._predicted_counts = None self._statval = None self._result = None self._check_valid_fit() self._apply_fit_range() def __str__(self): ss = self.__class__.__name__ ss += "\nSource model {}".format(self._model.__class__.__name__) ss += "\nStat {}".format(self.stat) ss += "\nForward Folded {}".format(self.forward_folded) ss += "\nFit range {}".format(self.fit_range) return ss @property def obs_list(self): """Observations participating in the fit""" return self._obs_list @obs_list.setter def obs_list(self, obs_list): if isinstance(obs_list, SpectrumObservation): obs_list = SpectrumObservationList([obs_list]) self._obs_list = SpectrumObservationList(obs_list) @property def bins_in_fit_range(self): """Bins participating in the fit for each observation.""" return self._bins_in_fit_range @property def predicted_counts(self): """Current value of predicted counts. For each observation a tuple to counts for the on and off region is returned. """ return self._predicted_counts @property def statval(self): """Current value of statval. For each observation the statval per bin is returned. """ return self._statval @property def fit_range(self): """Fit range.""" return self._fit_range @fit_range.setter def fit_range(self, fit_range): self._fit_range = fit_range self._apply_fit_range() @property def true_fit_range(self): """True fit range for each observation. True fit range is the fit range set in the `~gammapy.spectrum.SpectrumFit` with observation threshold taken into account. """ true_range = [] for binrange, obs in zip(self.bins_in_fit_range, self.obs_list): idx = np.where(binrange)[0] if len(idx) == 0: true_range.append(None) continue e_min = obs.e_reco[idx[0]] e_max = obs.e_reco[idx[-1] + 1] fit_range = u.Quantity((e_min, e_max)) true_range.append(fit_range) return true_range def _apply_fit_range(self): """Mark bins within desired fit range for each observation.""" self._bins_in_fit_range = [] for obs in self.obs_list: # Take into account fit range energy = obs.e_reco valid_range = np.zeros(energy.nbins) if self.fit_range is not None: precision = 1e-3 # to avoid floating round precision idx_lo = np.where(energy * (1 + precision) < self.fit_range[0])[0] valid_range[idx_lo] = 1 idx_hi = np.where(energy[:-1] * (1 - precision) > self.fit_range[1])[0] if len(idx_hi) != 0: idx_hi = np.insert(idx_hi, 0, idx_hi[0] - 1) valid_range[idx_hi] = 1 # Take into account thresholds try: quality = obs.on_vector.quality except AttributeError: quality = np.zeros(obs.e_reco.nbins) intersection = np.logical_and(1 - quality, 1 - valid_range) self._bins_in_fit_range.append(intersection)
[docs] def predict_counts(self): """Predict counts for all observations. The result is stored as ``predicted_counts`` attribute. """ predicted_counts = [] for obs in self.obs_list: mu_sig = self._predict_counts_helper(obs, self._model, self.forward_folded) predicted_counts.append(mu_sig) self._predicted_counts = predicted_counts
def _predict_counts_helper(self, obs, model, forward_folded=True): """Predict counts for one observation. Parameters ---------- obs : `~gammapy.spectrum.SpectrumObservation` Response functions model : `~gammapy.spectrum.models.SpectralModel` Source or background model forward_folded : bool, default: True Fold model with IRFs Returns ------- predicted_counts : `numpy.ndarray` Predicted counts for one observation """ predictor = CountsPredictor(model=model) if forward_folded: predictor.aeff = obs.aeff predictor.edisp = obs.edisp else: predictor.e_true = obs.e_reco predictor.livetime = obs.livetime predictor.run() counts = predictor.npred.data.data # Check count unit (~unit of model amplitude) if counts.unit.is_equivalent(""): counts = counts.value else: raise ValueError("Predicted counts {}".format(counts)) # Apply AREASCAL column counts *= obs.on_vector.areascal return counts
[docs] def calc_statval(self): """Calc statistic for all observations. The result is stored as attribute ``statval``, bin outside the fit range are set to 0. """ statval = [] for obs, npred in zip(self.obs_list, self.predicted_counts): on_stat = self._calc_statval_helper(obs, npred) statval.append(on_stat) self._statval = statval self._restrict_statval()
def _calc_statval_helper(self, obs, prediction): """Calculate ``statval`` for one observation. Parameters ---------- obs : `~gammapy.spectrum.SpectrumObservation` Measured counts prediction : tuple of `~numpy.ndarray` Predicted counts Returns ------- statsval : tuple of `~numpy.ndarray` Statval """ if self.stat == "cash": return stats.cash(n_on=obs.on_vector.data.data.value, mu_on=prediction) elif self.stat == "cstat": return stats.cstat(n_on=obs.on_vector.data.data.value, mu_on=prediction) elif self.stat == "wstat": on_stat_ = stats.wstat( n_on=obs.on_vector.data.data.value, n_off=obs.off_vector.data.data.value, alpha=obs.alpha, mu_sig=prediction, ) return np.nan_to_num(on_stat_) else: raise NotImplementedError("{}".format(self.stat))
[docs] def total_stat(self, parameters): """Statistic summed over all bins and all observations. This is the likelihood function that is passed to the optimizers Parameters ---------- parameters : `~gammapy.utils.fitting.Parameters` Model parameters """ self.predict_counts() self.calc_statval() total_stat = np.sum([np.sum(v) for v in self.statval], dtype=np.float64) return total_stat
def _restrict_statval(self): """Apply valid fit range to statval. """ for statval, valid_range in zip(self.statval, self.bins_in_fit_range): # Find bins outside safe range idx = np.where(np.invert(valid_range))[0] statval[idx] = 0 def _check_valid_fit(self): """Helper function to give useful error messages.""" # Assume that settings are the same for all observations test_obs = self.obs_list[0] irfs_exist = test_obs.aeff is not None or test_obs.edisp is not None if self.forward_folded and not irfs_exist: raise ValueError("IRFs required for forward folded fit") if self.stat == "wstat" and self.obs_list[0].off_vector is None: raise ValueError("Off vector required for WStat fit") try: test_obs.livetime except KeyError: raise ValueError("No observation livetime given") @property def result(self): """Bundle fit results into `~gammapy.spectrum.SpectrumFitResult`. Parameters ---------- parameters : `~gammapy.utils.modeling.Parameters` Best fit parameters """ from . import SpectrumFitResult # run again with best fit parameters statname = self.stat results = [] for idx, obs in enumerate(self.obs_list): fit_range = self.true_fit_range[idx] statval = np.sum(self.statval[idx]) stat_per_bin = self.statval[idx] npred = copy.deepcopy(self.predicted_counts[idx]) results.append( SpectrumFitResult( model=self._model, fit_range=fit_range, statname=statname, statval=statval, stat_per_bin=stat_per_bin, npred=npred, obs=obs, ) ) return results