SpectrumFit¶
-
class
gammapy.spectrum.SpectrumFit(obs_list, model, stat='wstat', forward_folded=True, fit_range=None)[source]¶ Bases:
gammapy.utils.fitting.FitOrchestrate a 1D counts spectrum fit.
After running the
run()method, the fit results are available inresult(). For usage examples see Spectral FittingParameters: - obs_list :
SpectrumObservationList,SpectrumObservation Observation(s) to fit
- model :
SpectralModel Source model with initial parameter values. Should return counts if
forward_foldedis False and a flux otherwise- stat : {‘wstat’, ‘cash’}
Fit statistic
- forward_folded : bool, default: True
Fold
modelwith the IRFs given inobs_list- fit_range : tuple of
Quantity The intersection between the fit range and the observation thresholds will be used. If you want to control which bins are taken into account in the fit for each observation, use
quality()
Attributes Summary
bins_in_fit_rangeBins participating in the fit for each observation. fit_rangeFit range. obs_listObservations participating in the fit predicted_countsCurrent value of predicted counts. resultBundle fit results into SpectrumFitResult.statvalCurrent value of statval. true_fit_rangeTrue fit range for each observation. Methods Summary
calc_statval()Calc statistic for all observations. confidence(parameter[, backend, sigma])Estimate confidence interval. covariance([backend])Estimate the covariance matrix. likelihood_contour()Compute likelihood contour. likelihood_profile(parameter[, values, …])Compute likelihood profile. minos_contour(x, y[, numpoints, sigma])Compute MINOS contour. optimize([backend])Run the optimization. predict_counts()Predict counts for all observations. run([optimize_opts, covariance_opts])Run all fitting steps. total_stat(parameters)Statistic summed over all bins and all observations. Attributes Documentation
-
bins_in_fit_range¶ Bins participating in the fit for each observation.
-
fit_range¶ Fit range.
-
obs_list¶ Observations participating in the fit
-
predicted_counts¶ Current value of predicted counts.
For each observation a tuple to counts for the on and off region is returned.
-
result¶ Bundle fit results into
SpectrumFitResult.Parameters: - parameters :
Parameters Best fit parameters
- parameters :
-
statval¶ Current value of statval.
For each observation the statval per bin is returned.
-
true_fit_range¶ True fit range for each observation.
True fit range is the fit range set in the
SpectrumFitwith observation threshold taken into account.
Methods Documentation
-
calc_statval()[source]¶ Calc statistic for all observations.
The result is stored as attribute
statval, bin outside the fit range are set to 0.
-
confidence(parameter, backend='minuit', sigma=1, **kwargs)¶ Estimate confidence interval.
Extra
kwargsare passed to the backend. E.g.iminuit.Minuit.minossupports amaxcalloption.Parameters: - backend : str
Which backend to use (see
gammapy.utils.fitting.registry)- parameter :
Parameter Parameter of interest
- sigma : float
Number of standard deviations for the confidence level
Returns: - result : dict
Dictionary with keys “errp”, ‘errn”, “success” and “nfev”.
-
covariance(backend='minuit')¶ Estimate the covariance matrix.
Assumes that the model parameters are already optimised.
Parameters: - backend : str
Which backend to use (see
gammapy.utils.fitting.registry)
Returns: - result :
CovarianceResult Results
-
likelihood_contour()¶ Compute likelihood contour.
The method used is to vary two parameters, keeping all others fixed. So this is taking a “slice” or “scan” of the likelihood.
See also:
Fit.minos_contourParameters: - TODO
Returns: - TODO
-
likelihood_profile(parameter, values=None, bounds=2, nvalues=11, reoptimize=False, optimize_opts=None)¶ Compute likelihood profile.
The method used is to vary one parameter, keeping all others fixed. So this is taking a “slice” or “scan” of the likelihood.
See also:
Fit.minos_profile.Parameters: - parameter :
Parameter Parameter of interest
- values :
Quantity(optional) Parameter values to evaluate the likelihood for.
- bounds : int or tuple of float
When an
intis passed the bounds are computed frombounds * sigmafrom the best fit value of the parameter, wheresigmacorresponds to the one sigma error on the parameter. If a tuple of floats is given those are taken as the min and max values andnvaluesare linearly spaced between those.- nvalues : int
Number of parameter grid points to use.
- reoptimize : bool
Re-optimize other parameters, when computing the likelihood profile.
Returns: - results : dict
Dictionary with keys “values” and “likelihood”.
- parameter :
-
minos_contour(x, y, numpoints=10, sigma=1.0)¶ Compute MINOS contour.
Calls
iminuit.Minuit.mncontour.This is a contouring algorithm for a 2D function which is not simply the likelihood function. That 2D function is given at each point
(par_1, par_2)by re-optimising all other free parameters, and taking the likelihood at that point.Very compute-intensive and slow.
Parameters: - x, y :
Parameter Parameters of interest
- numpoints : int
Number of contour points
- sigma : float
Number of standard deviations for the confidence level
Returns: - result : dict
Dictionary with keys “x”, “y” (Numpy arrays with contour points) and a boolean flag “success”. The result objects from
mncontourare in the additional keys “x_info” and “y_info”.
- x, y :
-
optimize(backend='minuit', **kwargs)¶ Run the optimization.
Parameters: - backend : str
Which backend to use (see
gammapy.utils.fitting.registry)- **kwargs : dict
Keyword arguments passed to the optimizer. For the
"minuit"backend see https://iminuit.readthedocs.io/en/latest/api.html#iminuit.Minuit for a detailed description of the available options. If there is an entry ‘migrad_opts’, those options will be passed toiminuit.Minuit.migrad().For the
"sherpa"backend you can from the optionsmethod = {"simplex", "levmar", "moncar", "gridsearch"}Those methods are described and compared in detail on http://cxc.cfa.harvard.edu/sherpa/methods/index.html. The available options of the optimization methods are described on the following pages in detail:For the
"scipy"backend the available options are desribed in detail here: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
Returns: - fit_result :
FitResult Results
-
predict_counts()[source]¶ Predict counts for all observations.
The result is stored as
predicted_countsattribute.
-
run(optimize_opts=None, covariance_opts=None)¶ Run all fitting steps.
Parameters: - optimize_opts : dict
Options passed to
Fit.optimize.- covariance_opts : dict
Options passed to
Fit.covariance.
Returns: - fit_result :
FitResult Results
-
total_stat(parameters)[source]¶ Statistic summed over all bins and all observations.
This is the likelihood function that is passed to the optimizers
Parameters: - parameters :
Parameters Model parameters
- parameters :
- obs_list :