SpectrumFitResult¶
-
class
gammapy.spectrum.SpectrumFitResult(model, fit_range=None, statname=None, statval=None, stat_per_bin=None, npred=None, obs=None)[source]¶ Bases:
objectResult of a
SpectrumFit.All fit results should be accessed via this class.
Parameters: - model :
SpectralModel Best-fit model
- fit_range :
Quantity Energy range of the spectral fit
- statname : str, optional
Statistic used for the fit
- statval : float, optional
Final fit statistic
- stat_per_bin : float, optional
Fit statistic value per bin
- npred : array-like, optional
Counts predicted by the fit
- obs :
SpectrumObservation Input data used for the fit
Attributes Summary
expected_source_countsPredicted source counts ( CountsSpectrum).fit_rangemodelnpredobsresidualsResiduals (predicted source - excess). stat_per_binstatnamestatvalMethods Summary
butterfly([energy, flux_unit])Compute butterfly table. from_dict(val)Create from dict. from_yaml(filename)Create from YAML file. plot(**kwargs)Plot counts and residuals in two panels. plot_counts(ax)Plot predicted and detected counts. plot_residuals(ax)Plot residuals. to_dict()Convert to dict. to_table([energy_unit, flux_unit])Convert to Table.to_yaml(filename[, mode])Write to YAML file. Attributes Documentation
-
expected_source_counts¶ Predicted source counts (
CountsSpectrum).
-
fit_range¶
-
model¶
-
npred¶
-
obs¶
-
residuals¶ Residuals (predicted source - excess).
-
stat_per_bin¶
-
statname¶
-
statval¶
Methods Documentation
-
butterfly(energy=None, flux_unit='TeV-1 cm-2 s-1')[source]¶ Compute butterfly table.
Parameters: - energy :
Quantity, optional Energies at which to evaluate the butterfly.
- flux_unit : str
Flux unit for the butterfly.
Returns: - table :
Table Butterfly info in table (cols: ‘energy’, ‘flux’, ‘flux_lo’, ‘flux_hi’)
- energy :
-
classmethod
from_yaml(filename)[source]¶ Create from YAML file.
Parameters: - filename : str, Path
File to read
-
plot(**kwargs)[source]¶ Plot counts and residuals in two panels.
Calls
plot_countsandplot_residuals.
- model :