SkyGaussian¶
-
class
gammapy.image.models.SkyGaussian(lon_0, lat_0, sigma, frame='galactic')[source]¶ Bases:
gammapy.image.models.SkySpatialModelTwo-dimensional symmetric Gaussian model
\[\phi(\text{lon}, \text{lat}) = N \times \text{exp}\left\{-\frac{1}{2} \frac{1-\text{cos}\theta}{1-\text{cos}\sigma}\right\}\,,\]where \(\theta\) is the angular separation between the center of the Gaussian and the evaluation point. This angle is calculated on the celestial sphere using the function
angular.separationdefined inastropy.coordinates.angle_utilities. The Gaussian is normalized to 1 on the sphere:\[N = \frac{1}{4\pi a\left[1-\text{exp}(-1/a)\right]}\,,\,\,\,\, a = 1-\text{cos}\sigma\,.\]The normalization factor is in units of \(\text{sr}^{-1}\). In the limit of small \(\theta\) and \(\sigma\), this definition reduces to the usual form:
\[\phi(\text{lon}, \text{lat}) = \frac{1}{2\pi\sigma^2} \exp{\left(-\frac{1}{2} \frac{\theta^2}{\sigma^2}\right)}\]Parameters: Attributes Summary
evaluation_radiusEvaluation radius ( Angle).framelat_0lon_0parametersParameters ( Parameters)positionSpatial model center position sigmaMethods Summary
__call__(self, lon, lat)Call evaluate method copy(self)A deep copy. evaluate(lon, lat, lon_0, lat_0, sigma)Evaluate the model (static function). to_dict(self[, selection])Attributes Documentation
-
frame¶
-
lat_0¶
-
lon_0¶
-
parameters¶ Parameters (
Parameters)
-
position¶ Spatial model center position
-
sigma¶
Methods Documentation
-
__call__(self, lon, lat)¶ Call evaluate method
-
copy(self)¶ A deep copy.
-
to_dict(self, selection='all')¶
-