SkyGaussian¶
-
class
gammapy.image.models.
SkyGaussian
(lon_0, lat_0, sigma, frame='galactic')[source]¶ Bases:
gammapy.image.models.SkySpatialModel
Two-dimensional symmetric Gaussian model
\[\phi(\text{lon}, \text{lat}) = N \times \text{exp}\left\{-\frac{1}{2} \frac{1-\text{cos}\theta}{1-\text{cos}\sigma}\right\}\,,\]where \(\theta\) is the angular separation between the center of the Gaussian and the evaluation point. This angle is calculated on the celestial sphere using the function
angular.separation
defined inastropy.coordinates.angle_utilities
. The Gaussian is normalized to 1 on the sphere:\[N = \frac{1}{4\pi a\left[1-\text{exp}(-1/a)\right]}\,,\,\,\,\, a = 1-\text{cos}\sigma\,.\]The normalization factor is in units of \(\text{sr}^{-1}\). In the limit of small \(\theta\) and \(\sigma\), this definition reduces to the usual form:
\[\phi(\text{lon}, \text{lat}) = \frac{1}{2\pi\sigma^2} \exp{\left(-\frac{1}{2} \frac{\theta^2}{\sigma^2}\right)}\]Parameters: Attributes Summary
evaluation_radius
Evaluation radius ( Angle
).frame
lat_0
lon_0
parameters
Parameters ( Parameters
)position
Spatial model center position sigma
Methods Summary
__call__
(self, lon, lat)Call evaluate method copy
(self)A deep copy. evaluate
(lon, lat, lon_0, lat_0, sigma)Evaluate the model (static function). to_dict
(self[, selection])Attributes Documentation
-
frame
¶
-
lat_0
¶
-
lon_0
¶
-
parameters
¶ Parameters (
Parameters
)
-
position
¶ Spatial model center position
-
sigma
¶
Methods Documentation
-
__call__
(self, lon, lat)¶ Call evaluate method
-
copy
(self)¶ A deep copy.
-
to_dict
(self, selection='all')¶
-