# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging
from collections import OrderedDict
import numpy as np
import scipy.interpolate
import scipy.ndimage
import scipy.signal
import astropy.units as u
from astropy.convolution import Tophat2DKernel
from astropy.io import fits
from gammapy.extern.skimage import block_reduce
from gammapy.utils.interpolation import ScaledRegularGridInterpolator
from gammapy.utils.random import InverseCDFSampler, get_random_state
from gammapy.utils.units import unit_from_fits_image_hdu
from .geom import MapCoord, pix_tuple_to_idx
from .utils import INVALID_INDEX, interp_to_order
from .wcsmap import WcsGeom, WcsMap
__all__ = ["WcsNDMap"]
log = logging.getLogger(__name__)
[docs]class WcsNDMap(WcsMap):
"""HEALPix map with any number of non-spatial dimensions.
This class uses an ND numpy array to store map values. For maps with
non-spatial dimensions and variable pixel size it will allocate an
array with dimensions commensurate with the largest image plane.
Parameters
----------
geom : `~gammapy.maps.WcsGeom`
WCS geometry object.
data : `~numpy.ndarray`
Data array. If none then an empty array will be allocated.
dtype : str, optional
Data type, default is float32
meta : `dict`
Dictionary to store meta data.
unit : str or `~astropy.units.Unit`
The map unit
"""
def __init__(self, geom, data=None, dtype="float32", meta=None, unit=""):
# TODO: Figure out how to mask pixels for integer data types
data_shape = geom.data_shape
if data is None:
data = self._make_default_data(geom, data_shape, dtype)
super().__init__(geom, data, meta, unit)
@staticmethod
def _make_default_data(geom, shape_np, dtype):
# Check whether corners of each image plane are valid
data = np.zeros(shape_np, dtype=dtype)
if not geom.is_regular or geom.is_allsky:
coords = geom.get_coord()
is_nan = np.isnan(coords.lon)
data[is_nan] = np.nan
return data
[docs] @classmethod
def from_hdu(cls, hdu, hdu_bands=None):
"""Make a WcsNDMap object from a FITS HDU.
Parameters
----------
hdu : `~astropy.io.fits.BinTableHDU` or `~astropy.io.fits.ImageHDU`
The map FITS HDU.
hdu_bands : `~astropy.io.fits.BinTableHDU`
The BANDS table HDU.
"""
geom = WcsGeom.from_header(hdu.header, hdu_bands)
shape = tuple([ax.nbin for ax in geom.axes])
shape_wcs = tuple([np.max(geom.npix[0]), np.max(geom.npix[1])])
meta = cls._get_meta_from_header(hdu.header)
unit = unit_from_fits_image_hdu(hdu.header)
# TODO: Should we support extracting slices?
if isinstance(hdu, fits.BinTableHDU):
map_out = cls(geom, meta=meta, unit=unit)
pix = hdu.data.field("PIX")
pix = np.unravel_index(pix, shape_wcs[::-1])
vals = hdu.data.field("VALUE")
if "CHANNEL" in hdu.data.columns.names and shape:
chan = hdu.data.field("CHANNEL")
chan = np.unravel_index(chan, shape[::-1])
idx = chan + pix
else:
idx = pix
map_out.set_by_idx(idx[::-1], vals)
else:
map_out = cls(geom=geom, meta=meta, data=hdu.data, unit=unit)
return map_out
[docs] def get_by_idx(self, idx):
idx = pix_tuple_to_idx(idx)
return self.data.T[idx]
[docs] def interp_by_coord(self, coords, interp=None, fill_value=None):
if self.geom.is_regular:
pix = self.geom.coord_to_pix(coords)
return self.interp_by_pix(pix, interp=interp, fill_value=fill_value)
else:
return self._interp_by_coord_griddata(coords, interp=interp)
[docs] def interp_by_pix(self, pix, interp=None, fill_value=None):
"""Interpolate map values at the given pixel coordinates.
"""
if not self.geom.is_regular:
raise ValueError("interp_by_pix only supported for regular geom.")
order = interp_to_order(interp)
if order == 0 or order == 1:
return self._interp_by_pix_linear_grid(
pix, order=order, fill_value=fill_value
)
elif order == 2 or order == 3:
return self._interp_by_pix_map_coordinates(pix, order=order)
else:
raise ValueError(f"Invalid interpolation order: {order!r}")
def _interp_by_pix_linear_grid(self, pix, order=1, fill_value=None):
# TODO: Cache interpolator
method_lookup = {0: "nearest", 1: "linear"}
try:
method = method_lookup[order]
except KeyError:
raise ValueError(f"Invalid interpolation order: {order!r}")
grid_pix = [np.arange(n, dtype=float) for n in self.data.shape[::-1]]
if np.any(np.isfinite(self.data)):
data = self.data.copy().T
data[~np.isfinite(data)] = 0.0
else:
data = self.data.T
fn = ScaledRegularGridInterpolator(
grid_pix, data, fill_value=fill_value, bounds_error=False, method=method
)
return fn(tuple(pix), clip=False)
def _interp_by_pix_map_coordinates(self, pix, order=1):
pix = tuple(
[
np.array(x, ndmin=1)
if not isinstance(x, np.ndarray) or x.ndim == 0
else x
for x in pix
]
)
return scipy.ndimage.map_coordinates(
self.data.T, pix, order=order, mode="nearest"
)
def _interp_by_coord_griddata(self, coords, interp=None):
order = interp_to_order(interp)
method_lookup = {0: "nearest", 1: "linear", 3: "cubic"}
method = method_lookup.get(order, None)
if method is None:
raise ValueError(f"Invalid interp: {interp!r}")
grid_coords = tuple(self.geom.get_coord(flat=True))
data = self.data[np.isfinite(self.data)]
vals = scipy.interpolate.griddata(
grid_coords, data, tuple(coords), method=method
)
m = ~np.isfinite(vals)
if np.any(m):
vals_fill = scipy.interpolate.griddata(
grid_coords, data, tuple([c[m] for c in coords]), method="nearest"
)
vals[m] = vals_fill
return vals
[docs] def fill_by_idx(self, idx, weights=None):
idx = pix_tuple_to_idx(idx)
msk = np.all(np.stack([t != INVALID_INDEX.int for t in idx]), axis=0)
idx = [t[msk] for t in idx]
if weights is not None:
if isinstance(weights, u.Quantity):
weights = weights.to_value(self.unit)
weights = weights[msk]
idx = np.ravel_multi_index(idx, self.data.T.shape)
idx, idx_inv = np.unique(idx, return_inverse=True)
weights = np.bincount(idx_inv, weights=weights).astype(self.data.dtype)
self.data.T.flat[idx] += weights
[docs] def set_by_idx(self, idx, vals):
idx = pix_tuple_to_idx(idx)
self.data.T[idx] = vals
[docs] def sum_over_axes(self, axes=None, keepdims=False):
"""To sum map values over all non-spatial axes.
Parameters
----------
keepdims : bool, optional
If this is set to true, the axes which are summed over are left in
the map with a single bin
axes: list
Names of MapAxis to reduce over
If None, all will summed over
Returns
-------
map_out : `~WcsNDMap`
Map with non-spatial axes summed over
"""
return self.reduce_over_axes(func=np.add, axes=axes, keepdims=keepdims)
[docs] def reduce_over_axes(self, func=np.add, keepdims=False, axes=None):
"""Reduce map over non-spatial axes
Parameters
----------
func : `~numpy.ufunc`
Function to use for reducing the data.
keepdims : bool, optional
If this is set to true, the axes which are summed over are left in
the map with a single bin
axes: list
Names of MapAxis to reduce over
If None, all will reduced
Returns
-------
map_out : `~WcsNDMap`
Map with non-spatial axes reduced
"""
if axes is None:
axes = [ax.name for ax in self.geom.axes]
map_out = self.copy()
for ax in axes:
map_out = map_out.reduce(ax, func=func, keepdims=keepdims)
return map_out
[docs] def reduce(self, axis, func=np.add, keepdims=False):
"""Reduce map over a single non-spatial axis
Parameters
----------
axis: str
The name of the axis to reduce over
func : `~numpy.ufunc`
Function to use for reducing the data.
keepdims : bool, optional
If this is set to true, the axes which are summed over are left in
the map with a single bin
Returns
-------
map_out : `~WcsNDMap`
Map with the given non-spatial axes reduced
"""
if keepdims:
geom = self.geom.squash(axis=axis)
else:
geom = self.geom.drop(axis=axis)
names = [ax.name for ax in reversed(self.geom.axes)]
idx = names.index(axis)
data = func.reduce(
self.data, axis=idx, keepdims=keepdims, where=~np.isnan(self.data)
)
return self._init_copy(geom=geom, data=data)
[docs] def pad(self, pad_width, mode="constant", cval=0, order=1):
if np.isscalar(pad_width):
pad_width = (pad_width, pad_width)
pad_width += (0,) * (self.geom.ndim - 2)
geom = self.geom.pad(pad_width[:2])
if self.geom.is_regular and mode != "interp":
return self._pad_np(geom, pad_width, mode, cval)
else:
return self._pad_coadd(geom, pad_width, mode, cval, order)
def _pad_np(self, geom, pad_width, mode, cval):
"""Pad a map using ``numpy.pad``.
This method only works for regular geometries but should be more
efficient when working with large maps.
"""
kwargs = {}
if mode == "constant":
kwargs["constant_values"] = cval
pad_width = [(t, t) for t in pad_width]
data = np.pad(self.data, pad_width[::-1], mode, **kwargs)
return self._init_copy(geom=geom, data=data)
def _pad_coadd(self, geom, pad_width, mode, cval, order):
"""Pad a map manually by coadding the original map with the new map."""
idx_in = self.geom.get_idx(flat=True)
idx_in = tuple([t + w for t, w in zip(idx_in, pad_width)])[::-1]
idx_out = geom.get_idx(flat=True)[::-1]
map_out = self._init_copy(geom=geom, data=None)
map_out.coadd(self)
if mode == "constant":
pad_msk = np.zeros_like(map_out.data, dtype=bool)
pad_msk[idx_out] = True
pad_msk[idx_in] = False
map_out.data[pad_msk] = cval
elif mode == "interp":
coords = geom.pix_to_coord(idx_out[::-1])
m = self.geom.contains(coords)
coords = tuple([c[~m] for c in coords])
vals = self.interp_by_coord(coords, interp=order)
map_out.set_by_coord(coords, vals)
else:
raise ValueError(f"Invalid mode: {mode!r}")
return map_out
[docs] def crop(self, crop_width):
if np.isscalar(crop_width):
crop_width = (crop_width, crop_width)
geom = self.geom.crop(crop_width)
if self.geom.is_regular:
slices = [slice(None)] * len(self.geom.axes)
slices += [
slice(crop_width[1], int(self.geom.npix[1] - crop_width[1])),
slice(crop_width[0], int(self.geom.npix[0] - crop_width[0])),
]
data = self.data[tuple(slices)]
map_out = self._init_copy(geom=geom, data=data)
else:
# FIXME: This could be done more efficiently by
# constructing the appropriate slices for each image plane
map_out = self._init_copy(geom=geom, data=None)
map_out.coadd(self)
return map_out
[docs] def upsample(self, factor, order=0, preserve_counts=True, axis=None):
geom = self.geom.upsample(factor, axis=axis)
idx = geom.get_idx()
if axis is None:
pix = (
(idx[0] - 0.5 * (factor - 1)) / factor,
(idx[1] - 0.5 * (factor - 1)) / factor,
) + idx[2:]
else:
pix = list(idx)
idx_ax = self.geom.get_axis_index_by_name(axis)
pix[idx_ax] = (pix[idx_ax] - 0.5 * (factor - 1)) / factor
data = scipy.ndimage.map_coordinates(
self.data.T, tuple(pix), order=order, mode="nearest"
)
if preserve_counts:
if axis is None:
data /= factor ** 2
else:
data /= factor
return self._init_copy(geom=geom, data=data)
[docs] def downsample(self, factor, preserve_counts=True, axis=None):
geom = self.geom.downsample(factor, axis=axis)
if axis is None:
block_size = (factor, factor) + (1,) * len(self.geom.axes)
else:
block_size = [1] * self.data.ndim
idx = self.geom.get_axis_index_by_name(axis)
block_size[-(idx + 1)] = factor
func = np.nansum if preserve_counts else np.nanmean
data = block_reduce(self.data, tuple(block_size[::-1]), func=func)
return self._init_copy(geom=geom, data=data)
[docs] def plot(self, ax=None, fig=None, add_cbar=False, stretch="linear", **kwargs):
"""
Plot image on matplotlib WCS axes.
Parameters
----------
ax : `~astropy.visualization.wcsaxes.WCSAxes`, optional
WCS axis object to plot on.
fig : `~matplotlib.figure.Figure`
Figure object.
add_cbar : bool
Add color bar?
stretch : str
Passed to `astropy.visualization.simple_norm`.
**kwargs : dict
Keyword arguments passed to `~matplotlib.pyplot.imshow`.
Returns
-------
fig : `~matplotlib.figure.Figure`
Figure object.
ax : `~astropy.visualization.wcsaxes.WCSAxes`
WCS axis object
cbar : `~matplotlib.colorbar.Colorbar` or None
Colorbar object.
"""
import matplotlib.pyplot as plt
from astropy.visualization import simple_norm
from astropy.visualization.wcsaxes.frame import EllipticalFrame
if not self.geom.is_image:
raise TypeError("Use .plot_interactive() for Map dimension > 2")
if fig is None:
fig = plt.gcf()
if ax is None:
if self.geom.is_allsky:
ax = fig.add_subplot(
1, 1, 1, projection=self.geom.wcs, frame_class=EllipticalFrame
)
else:
ax = fig.add_subplot(1, 1, 1, projection=self.geom.wcs)
data = self.data.astype(float)
kwargs.setdefault("interpolation", "nearest")
kwargs.setdefault("origin", "lower")
kwargs.setdefault("cmap", "afmhot")
norm = simple_norm(data[np.isfinite(data)], stretch)
kwargs.setdefault("norm", norm)
caxes = ax.imshow(data, **kwargs)
cbar = fig.colorbar(caxes, ax=ax, label=str(self.unit)) if add_cbar else None
if self.geom.is_allsky:
ax = self._plot_format_allsky(ax)
else:
ax = self._plot_format(ax)
# without this the axis limits are changed when calling scatter
ax.autoscale(enable=False)
return fig, ax, cbar
def _plot_format(self, ax):
try:
ax.coords["glon"].set_axislabel("Galactic Longitude")
ax.coords["glat"].set_axislabel("Galactic Latitude")
except KeyError:
ax.coords["ra"].set_axislabel("Right Ascension")
ax.coords["dec"].set_axislabel("Declination")
except AttributeError:
log.info("Can't set coordinate axes. No WCS information available.")
return ax
def _plot_format_allsky(self, ax):
# Remove frame
ax.coords.frame.set_linewidth(0)
# Set plot axis limits
xmin, _ = self.geom.coord_to_pix({"lon": 180, "lat": 0})
xmax, _ = self.geom.coord_to_pix({"lon": -180, "lat": 0})
_, ymin = self.geom.coord_to_pix({"lon": 0, "lat": -90})
_, ymax = self.geom.coord_to_pix({"lon": 0, "lat": 90})
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.text(0, ymax, self.geom.frame + " coords")
# Grid and ticks
glon_spacing, glat_spacing = 45, 15
lon, lat = ax.coords
lon.set_ticks(spacing=glon_spacing * u.deg, color="w", alpha=0.8)
lat.set_ticks(spacing=glat_spacing * u.deg)
lon.set_ticks_visible(False)
lon.set_major_formatter("d")
lat.set_major_formatter("d")
lon.set_ticklabel(color="w", alpha=0.8)
lon.grid(alpha=0.2, linestyle="solid", color="w")
lat.grid(alpha=0.2, linestyle="solid", color="w")
return ax
[docs] def smooth(self, width, kernel="gauss", **kwargs):
"""Smooth the map.
Iterates over 2D image planes, processing one at a time.
Parameters
----------
width : `~astropy.units.Quantity`, str or float
Smoothing width given as quantity or float. If a float is given it
interpreted as smoothing width in pixels. If an (angular) quantity
is given it converted to pixels using ``geom.wcs.wcs.cdelt``.
It corresponds to the standard deviation in case of a Gaussian kernel,
the radius in case of a disk kernel, and the side length in case
of a box kernel.
kernel : {'gauss', 'disk', 'box'}
Kernel shape
kwargs : dict
Keyword arguments passed to `~scipy.ndimage.uniform_filter`
('box'), `~scipy.ndimage.gaussian_filter` ('gauss') or
`~scipy.ndimage.convolve` ('disk').
Returns
-------
image : `WcsNDMap`
Smoothed image (a copy, the original object is unchanged).
"""
if isinstance(width, (u.Quantity, str)):
width = u.Quantity(width) / self.geom.pixel_scales.mean()
width = width.to_value("")
smoothed_data = np.empty(self.data.shape, dtype=float)
for img, idx in self.iter_by_image():
img = img.astype(float)
if kernel == "gauss":
data = scipy.ndimage.gaussian_filter(img, width, **kwargs)
elif kernel == "disk":
disk = Tophat2DKernel(width)
disk.normalize("integral")
data = scipy.ndimage.convolve(img, disk.array, **kwargs)
elif kernel == "box":
data = scipy.ndimage.uniform_filter(img, width, **kwargs)
else:
raise ValueError(f"Invalid kernel: {kernel!r}")
smoothed_data[idx] = data
return self._init_copy(data=smoothed_data)
[docs] def get_spectrum(self, region=None, func=np.nansum):
"""Extract spectrum in a given region.
The spectrum can be computed by summing (or, more generally, applying ``func``)
along the spatial axes in each energy bin. This occurs only inside the ``region``,
which by default is assumed to be the whole spatial extension of the map.
Parameters
----------
region: `~regions.Region`
Region (pixel or sky regions accepted).
func : numpy.ufunc
Function to reduce the data.
Returns
-------
spectrum : `~gammapy.spectrum.CountsSpectrum`
Spectrum in the given region.
"""
from gammapy.spectrum import CountsSpectrum
energy_axis = self.geom.get_axis_by_name("energy")
if region:
mask = self.geom.region_mask([region])
data = self.data[mask].reshape(energy_axis.nbin, -1)
data = func(data, axis=1)
else:
data = func(self.data, axis=(1, 2))
edges = energy_axis.edges
return CountsSpectrum(
data=data,
energy_lo=edges[:-1],
energy_hi=edges[1:],
unit=self.unit,
region=region,
)
[docs] def convolve(self, kernel, use_fft=True, **kwargs):
"""
Convolve map with a kernel.
If the kernel is two dimensional, it is applied to all image planes likewise.
If the kernel is higher dimensional it must match the map in the number of
dimensions and the corresponding kernel is selected for every image plane.
Parameters
----------
kernel : `~gammapy.cube.PSFKernel` or `numpy.ndarray`
Convolution kernel.
use_fft : bool
Use `scipy.signal.fftconvolve` or `scipy.ndimage.convolve`.
kwargs : dict
Keyword arguments passed to `scipy.signal.fftconvolve` or
`scipy.ndimage.convolve`.
Returns
-------
map : `WcsNDMap`
Convolved map.
"""
from gammapy.cube import PSFKernel
conv_function = scipy.signal.fftconvolve if use_fft else scipy.ndimage.convolve
convolved_data = np.empty(self.data.shape, dtype=np.float32)
if use_fft:
kwargs.setdefault("mode", "same")
if isinstance(kernel, PSFKernel):
kmap = kernel.psf_kernel_map
if not np.allclose(
self.geom.pixel_scales.deg, kmap.geom.pixel_scales.deg, rtol=1e-5
):
raise ValueError("Pixel size of kernel and map not compatible.")
kernel = kmap.data.astype(np.float32)
for img, idx in self.iter_by_image():
ikern = Ellipsis if kernel.ndim == 2 else idx
convolved_data[idx] = conv_function(
img.astype(np.float32), kernel[ikern], **kwargs
)
return self._init_copy(data=convolved_data)
[docs] def apply_edisp(self, edisp):
"""Apply energy dispersion to map. Requires energy axis.
Parameters
----------
edisp : `gammapy.irf.EDispKernel`
Energy dispersion matrix
Returns
-------
map : `WcsNDMap`
Map with energy dispersion applied.
"""
loc = self.geom.get_axis_index_by_name("energy")
data = np.rollaxis(self.data, loc, len(self.data.shape))
data = np.dot(data, edisp.pdf_matrix)
data = np.rollaxis(data, -1, loc)
e_reco_axis = edisp.e_reco.copy(name="energy")
geom_reco = self.geom.to_image().to_cube(axes=[e_reco_axis])
return self._init_copy(geom=geom_reco, data=data)
[docs] def cutout(self, position, width, mode="trim"):
"""
Create a cutout around a given position.
Parameters
----------
position : `~astropy.coordinates.SkyCoord`
Center position of the cutout region.
width : tuple of `~astropy.coordinates.Angle`
Angular sizes of the region in (lon, lat) in that specific order.
If only one value is passed, a square region is extracted.
mode : {'trim', 'partial', 'strict'}
Mode option for Cutout2D, for details see `~astropy.nddata.utils.Cutout2D`.
Returns
-------
cutout : `~gammapy.maps.WcsNDMap`
Cutout map
"""
geom_cutout = self.geom.cutout(position=position, width=width, mode=mode)
slices = geom_cutout.cutout_info["parent-slices"]
parent_slices = Ellipsis, slices[0], slices[1]
slices = geom_cutout.cutout_info["cutout-slices"]
cutout_slices = Ellipsis, slices[0], slices[1]
data = np.zeros(shape=geom_cutout.data_shape, dtype=self.data.dtype)
data[cutout_slices] = self.data[parent_slices]
return self._init_copy(geom=geom_cutout, data=data)
[docs] def stack(self, other, weights=None):
"""Stack cutout into map.
Parameters
----------
other : `WcsNDMap`
Other map to stack
weights : `WcsNDMap`
Array to be used as weights. The spatial geometry must be equivalent
to `other` and additional axes must be broadcastable.
"""
if self.geom == other.geom:
parent_slices, cutout_slices = None, None
elif self.geom.is_aligned(other.geom):
slices = other.geom.cutout_info["parent-slices"]
parent_slices = Ellipsis, slices[0], slices[1]
slices = other.geom.cutout_info["cutout-slices"]
cutout_slices = Ellipsis, slices[0], slices[1]
else:
raise ValueError(
"Can only stack equivalent maps or cutout of the same map."
)
data = other.data[cutout_slices]
if weights is not None:
if not other.geom.to_image() == weights.geom.to_image():
raise ValueError("Incompatible spatial geoms between map and weights")
data = data * weights.data[cutout_slices]
self.data[parent_slices] += data
[docs] def sample_coord(self, n_events, random_state=0):
"""Sample position and energy of events.
Parameters
----------
n_events : int
Number of events to sample.
random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}
Defines random number generator initialisation.
Passed to `~gammapy.utils.random.get_random_state`.
Returns
-------
coords : `~gammapy.maps.MapCoord` object.
Sequence of coordinates and energies of the sampled events.
"""
random_state = get_random_state(random_state)
sampler = InverseCDFSampler(pdf=self.data, random_state=random_state)
coords_pix = sampler.sample(n_events)
coords = self.geom.pix_to_coord(coords_pix[::-1])
# TODO: pix_to_coord should return a MapCoord object
axes_names = ["lon", "lat"] + [ax.name for ax in self.geom.axes]
cdict = OrderedDict(zip(axes_names, coords))
return MapCoord.create(cdict, frame=self.geom.frame)