Source code for gammapy.modeling.models.spectral

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Spectral models for Gammapy."""
import operator
import numpy as np
import scipy.optimize
import scipy.special
import astropy.units as u
from astropy.table import Table
from gammapy.maps import MapAxis
from gammapy.maps.utils import edges_from_lo_hi
from gammapy.modeling import Parameter, Parameters
from gammapy.utils.integrate import evaluate_integral_pwl, trapz_loglog
from gammapy.utils.interpolation import ScaledRegularGridInterpolator
from gammapy.utils.scripts import make_path
from .core import Model


def integrate_spectrum(func, emin, emax, ndecade=100, intervals=False):
    """Integrate 1d function using the log-log trapezoidal rule.

    If scalar values for xmin and xmax are passed an oversampled grid is generated using the
    ``ndecade`` keyword argument. If xmin and xmax arrays are passed, no
    oversampling is performed and the integral is computed in the provided
    grid.

    Parameters
    ----------
    func : callable
        Function to integrate.
    emin : `~astropy.units.Quantity`
        Integration range minimum
    emax : `~astropy.units.Quantity`
        Integration range minimum
    ndecade : int, optional
        Number of grid points per decade used for the integration.
        Default : 100.
    intervals : bool, optional
        Return integrals in the grid not the sum, default: False
    """
    if emin.isscalar and emax.isscalar:
        energies = MapAxis.from_energy_bounds(
            emin=emin, emax=emax, nbin=ndecade, per_decade=True
        ).edges
    else:
        energies = edges_from_lo_hi(emin, emax)

    values = func(energies)

    integral = trapz_loglog(values, energies)

    if intervals:
        return integral

    return integral.sum()


[docs]class SpectralModel(Model): """Spectral model base class."""
[docs] def __call__(self, energy): kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, energy) return self.evaluate(energy, **kwargs)
@staticmethod def _convert_evaluate_unit(kwargs_ref, energy): kwargs = {} for name, quantity in kwargs_ref.items(): if quantity.unit.physical_type == "energy": quantity = quantity.to(energy.unit) kwargs[name] = quantity return kwargs def __add__(self, model): if not isinstance(model, SpectralModel): model = ConstantSpectralModel(const=model) return CompoundSpectralModel(self, model, operator.add) def __radd__(self, model): return self.__add__(model) def __sub__(self, model): if not isinstance(model, SpectralModel): model = ConstantSpectralModel(const=model) return CompoundSpectralModel(self, model, operator.sub) def __rsub__(self, model): return self.__sub__(model) def _evaluate_gradient(self, energy, eps): n = len(self.parameters) f = self(energy) shape = (n, len(np.atleast_1d(energy))) df_dp = np.zeros(shape) for idx, parameter in enumerate(self.parameters): if parameter.frozen or eps[idx] == 0: continue parameter.value += eps[idx] df = self(energy) - f df_dp[idx] = df.value / eps[idx] # Reset model to original parameter parameter.value -= eps[idx] return df_dp
[docs] def evaluate_error(self, energy, epsilon=1e-4): """Evaluate spectral model with error propagation. Parameters ---------- energy : `~astropy.units.Quantity` Energy at which to evaluate epsilon : float Step size of the gradient evaluation. Given as a fraction of the parameter error. Returns ------- dnde, dnde_error : tuple of `~astropy.units.Quantity` Tuple of flux and flux error. """ p_cov = self.parameters.covariance eps = np.sqrt(np.diag(self.parameters.covariance)) * epsilon df_dp = self._evaluate_gradient(energy, eps) f_cov = df_dp.T @ p_cov @ df_dp f_err = np.sqrt(np.diagonal(f_cov)) q = self(energy) return u.Quantity([q.value, f_err], unit=q.unit)
[docs] def integral(self, emin, emax, **kwargs): r"""Integrate spectral model numerically. .. math:: F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE If array input for ``emin`` and ``emax`` is given you have to set ``intervals=True`` if you want the integral in each energy bin. Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. **kwargs : dict Keyword arguments passed to :func:`~gammapy.utils.integrate.integrate_spectrum` """ return integrate_spectrum(self, emin, emax, **kwargs)
[docs] def energy_flux(self, emin, emax, **kwargs): r"""Compute energy flux in given energy range. .. math:: G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. **kwargs : dict Keyword arguments passed to func:`~gammapy.utils.integrate.integrate_spectrum` """ def f(x): return x * self(x) return integrate_spectrum(f, emin, emax, **kwargs)
[docs] def plot( self, energy_range, ax=None, energy_unit="TeV", flux_unit="cm-2 s-1 TeV-1", energy_power=0, n_points=100, **kwargs, ): """Plot spectral model curve. kwargs are forwarded to `matplotlib.pyplot.plot` By default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:: from gammapy.modeling.models import ExpCutoffPowerLawSpectralModel from astropy import units as u pwl = ExpCutoffPowerLawSpectralModel() ax = pwl.plot(energy_range=(0.1, 100) * u.TeV) ax.set_yscale('linear') Parameters ---------- ax : `~matplotlib.axes.Axes`, optional Axis energy_range : `~astropy.units.Quantity` Plot range energy_unit : str, `~astropy.units.Unit`, optional Unit of the energy axis flux_unit : str, `~astropy.units.Unit`, optional Unit of the flux axis energy_power : int, optional Power of energy to multiply flux axis with n_points : int, optional Number of evaluation nodes Returns ------- ax : `~matplotlib.axes.Axes`, optional Axis """ import matplotlib.pyplot as plt ax = plt.gca() if ax is None else ax emin, emax = energy_range energy = MapAxis.from_energy_bounds(emin, emax, n_points, energy_unit).edges # evaluate model flux = self(energy).to(flux_unit) y = self._plot_scale_flux(energy, flux, energy_power) ax.plot(energy.value, y.value, **kwargs) self._plot_format_ax(ax, energy, y, energy_power) return ax
[docs] def plot_error( self, energy_range, ax=None, energy_unit="TeV", flux_unit="cm-2 s-1 TeV-1", energy_power=0, n_points=100, **kwargs, ): """Plot spectral model error band. .. note:: This method calls ``ax.set_yscale("log", nonposy='clip')`` and ``ax.set_xscale("log", nonposx='clip')`` to create a log-log representation. The additional argument ``nonposx='clip'`` avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623). When you call ``plt.loglog()`` or ``plt.semilogy()`` explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also use ``plt.loglog(nonposx='clip', nonposy='clip')`` or ``plt.semilogy(nonposy='clip')``. Parameters ---------- ax : `~matplotlib.axes.Axes`, optional Axis energy_range : `~astropy.units.Quantity` Plot range energy_unit : str, `~astropy.units.Unit`, optional Unit of the energy axis flux_unit : str, `~astropy.units.Unit`, optional Unit of the flux axis energy_power : int, optional Power of energy to multiply flux axis with n_points : int, optional Number of evaluation nodes **kwargs : dict Keyword arguments forwarded to `matplotlib.pyplot.fill_between` Returns ------- ax : `~matplotlib.axes.Axes`, optional Axis """ import matplotlib.pyplot as plt ax = plt.gca() if ax is None else ax kwargs.setdefault("facecolor", "black") kwargs.setdefault("alpha", 0.2) kwargs.setdefault("linewidth", 0) emin, emax = energy_range energy = MapAxis.from_energy_bounds(emin, emax, n_points, energy_unit).edges flux, flux_err = self.evaluate_error(energy).to(flux_unit) y_lo = self._plot_scale_flux(energy, flux - flux_err, energy_power) y_hi = self._plot_scale_flux(energy, flux + flux_err, energy_power) where = (energy >= energy_range[0]) & (energy <= energy_range[1]) ax.fill_between(energy.value, y_lo.value, y_hi.value, where=where, **kwargs) self._plot_format_ax(ax, energy, y_lo, energy_power) return ax
@staticmethod def _plot_format_ax(ax, energy, y, energy_power): ax.set_xlabel(f"Energy [{energy.unit}]") if energy_power > 0: ax.set_ylabel(f"E{energy_power} * Flux [{y.unit}]") else: ax.set_ylabel(f"Flux [{y.unit}]") ax.set_xscale("log", nonposx="clip") ax.set_yscale("log", nonposy="clip") @staticmethod def _plot_scale_flux(energy, flux, energy_power): try: eunit = [_ for _ in flux.unit.bases if _.physical_type == "energy"][0] except IndexError: eunit = energy.unit y = flux * np.power(energy, energy_power) return y.to(flux.unit * eunit ** energy_power)
[docs] def spectral_index(self, energy, epsilon=1e-5): """Compute spectral index at given energy. Parameters ---------- energy : `~astropy.units.Quantity` Energy at which to estimate the index epsilon : float Fractional energy increment to use for determining the spectral index. Returns ------- index : float Estimated spectral index. """ f1 = self(energy) f2 = self(energy * (1 + epsilon)) return np.log(f1 / f2) / np.log(1 + epsilon)
[docs] def inverse(self, value, emin=0.1 * u.TeV, emax=100 * u.TeV): """Return energy for a given function value of the spectral model. Calls the `scipy.optimize.brentq` numerical root finding method. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. emin : `~astropy.units.Quantity` Lower bracket value in case solution is not unique. emax : `~astropy.units.Quantity` Upper bracket value in case solution is not unique. Returns ------- energy : `~astropy.units.Quantity` Energies at which the model has the given ``value``. """ eunit = "TeV" energies = [] for val in np.atleast_1d(value): def f(x): # scale by 1e12 to achieve better precision energy = u.Quantity(x, eunit, copy=False) y = self(energy).to_value(value.unit) return 1e12 * (y - val.value) energy = scipy.optimize.brentq( f, emin.to_value(eunit), emax.to_value(eunit) ) energies.append(energy) return u.Quantity(energies, eunit, copy=False)
[docs]class ConstantSpectralModel(SpectralModel): r"""Constant model. For more information see :ref:`constant-spectral-model`. Parameters ---------- const : `~astropy.units.Quantity` :math:`k` """ tag = "ConstantSpectralModel" const = Parameter("const", "1e-12 cm-2 s-1 TeV-1")
[docs] @staticmethod def evaluate(energy, const): """Evaluate the model (static function).""" return np.ones(np.atleast_1d(energy).shape) * const
[docs]class CompoundSpectralModel(SpectralModel): """Arithmetic combination of two spectral models. For more information see :ref:`compound-spectral-model`. """ tag = "CompoundSpectralModel" def __init__(self, model1, model2, operator): self.model1 = model1 self.model2 = model2 self.operator = operator super().__init__() @property def parameters(self): return self.model1.parameters + self.model2.parameters def __str__(self): return ( f"{self.__class__.__name__}\n" f" Component 1 : {self.model1}\n" f" Component 2 : {self.model2}\n" f" Operator : {self.operator}\n" )
[docs] def __call__(self, energy): val1 = self.model1(energy) val2 = self.model2(energy) return self.operator(val1, val2)
[docs] def to_dict(self): return { "model1": self.model1.to_dict(), "model2": self.model2.to_dict(), "operator": self.operator, }
[docs]class PowerLawSpectralModel(SpectralModel): r"""Spectral power-law model. For more information see :ref:`powerlaw-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` """ tag = "PowerLawSpectralModel" index = Parameter("index", 2.0) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True) evaluate_integral = staticmethod(evaluate_integral_pwl)
[docs] @staticmethod def evaluate(energy, index, amplitude, reference): """Evaluate the model (static function).""" return amplitude * np.power((energy / reference), -index)
[docs] @staticmethod def evaluate_energy_flux(emin, emax, index, amplitude, reference): """Evaluate the energy flux (static function)""" val = -1 * index + 2 prefactor = amplitude * reference ** 2 / val upper = (emax / reference) ** val lower = (emin / reference) ** val energy_flux = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): # see https://www.wolframalpha.com/input/?i=a+*+x+*+(x%2Fb)+%5E+(-2) # for reference energy_flux[mask] = amplitude * reference ** 2 * np.log(emax / emin)[mask] return energy_flux
[docs] def integral(self, emin, emax, **kwargs): r"""Integrate power law analytically. .. math:: F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}\phi(E)dE = \left. \phi_0 \frac{E_0}{-\Gamma + 1} \left( \frac{E}{E_0} \right)^{-\Gamma + 1} \right \vert _{E_{min}}^{E_{max}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range """ kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, emin) return self.evaluate_integral(emin=emin, emax=emax, **kwargs)
[docs] def energy_flux(self, emin, emax): r"""Compute energy flux in given energy range analytically. .. math:: G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}E \phi(E)dE = \left. \phi_0 \frac{E_0^2}{-\Gamma + 2} \left( \frac{E}{E_0} \right)^{-\Gamma + 2} \right \vert _{E_{min}}^{E_{max}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. """ kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, emin) return self.evaluate_energy_flux(emin=emin, emax=emax, **kwargs)
[docs] def inverse(self, value): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ p = self.parameters base = value / p["amplitude"].quantity return p["reference"].quantity * np.power(base, -1.0 / p["index"].value)
@property def pivot_energy(self): r"""The decorrelation energy is defined as: .. math:: E_D = E_0 * \exp{cov(\phi_0, \Gamma) / (\phi_0 \Delta \Gamma^2)} Formula (1) in https://arxiv.org/pdf/0910.4881.pdf """ index_err = self.parameters.error("index") reference = self.reference.quantity amplitude = self.amplitude.quantity cov_index_ampl = self.parameters.covariance[0, 1] * amplitude.unit return reference * np.exp(cov_index_ampl / (amplitude * index_err ** 2))
[docs]class PowerLaw2SpectralModel(SpectralModel): r"""Spectral power-law model with integral as amplitude parameter. For more information see :ref:`powerlaw2-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` Spectral index :math:`\Gamma` amplitude : `~astropy.units.Quantity` Integral flux :math:`F_0`. emin : `~astropy.units.Quantity` Lower energy limit :math:`E_{0, min}`. emax : `~astropy.units.Quantity` Upper energy limit :math:`E_{0, max}`. """ tag = "PowerLaw2SpectralModel" amplitude = Parameter("amplitude", "1e-12 cm-2 s-1") index = Parameter("index", 2) emin = Parameter("emin", "0.1 TeV", frozen=True) emax = Parameter("emax", "100 TeV", frozen=True)
[docs] @staticmethod def evaluate(energy, amplitude, index, emin, emax): """Evaluate the model (static function).""" top = -index + 1 # to get the energies dimensionless we use a modified formula bottom = emax - emin * (emin / emax) ** (-index) return amplitude * (top / bottom) * np.power(energy / emax, -index)
[docs] def integral(self, emin, emax, **kwargs): r"""Integrate power law analytically. .. math:: F(E_{min}, E_{max}) = F_0 \cdot \frac{E_{max}^{\Gamma + 1} \ - E_{min}^{\Gamma + 1}}{E_{0, max}^{\Gamma + 1} \ - E_{0, min}^{\Gamma + 1}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. """ pars = self.parameters temp1 = np.power(emax, -pars["index"].value + 1) temp2 = np.power(emin, -pars["index"].value + 1) top = temp1 - temp2 temp1 = np.power(pars["emax"].quantity, -pars["index"].value + 1) temp2 = np.power(pars["emin"].quantity, -pars["index"].value + 1) bottom = temp1 - temp2 return pars["amplitude"].quantity * top / bottom
[docs] def inverse(self, value): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ p = self.parameters amplitude, index, emin, emax = ( p["amplitude"].quantity, p["index"].value, p["emin"].quantity, p["emax"].quantity, ) # to get the energies dimensionless we use a modified formula top = -index + 1 bottom = emax - emin * (emin / emax) ** (-index) term = (bottom / top) * (value / amplitude) return np.power(term.to_value(""), -1.0 / index) * emax
[docs]class SmoothBrokenPowerLawSpectralModel(SpectralModel): r"""Spectral smooth broken power-law model. For more information see :ref:`smooth-broken-powerlaw-spectral-model`. Parameters ---------- index1 : `~astropy.units.Quantity` :math:`\Gamma1` index2 : `~astropy.units.Quantity` :math:`\Gamma2` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` ebreak : `~astropy.units.Quantity` :math:`E_{break}` beta : `~astropy.units.Quantity` :math:`\beta` """ tag = "SmoothBrokenPowerLawSpectralModel" index1 = Parameter("index1", 2.0) index2 = Parameter("index2", 2.0) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") ebreak = Parameter("ebreak", "1 TeV") reference = Parameter("reference", "1 TeV", frozen=True) beta = Parameter("beta", 1, frozen=True)
[docs] @staticmethod def evaluate(energy, index1, index2, amplitude, ebreak, reference, beta): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index1) brk = (1 + (energy / ebreak) ** ((index2 - index1) / beta)) ** (-beta) return pwl * brk
[docs]class ExpCutoffPowerLawSpectralModel(SpectralModel): r"""Spectral exponential cutoff power-law model. For more information see :ref:`exp-cutoff-powerlaw-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` lambda_ : `~astropy.units.Quantity` :math:`\lambda` alpha : `~astropy.units.Quantity` :math:`\alpha` """ tag = "ExpCutoffPowerLawSpectralModel" index = Parameter("index", 1.5) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True) lambda_ = Parameter("lambda_", "0.1 TeV-1") alpha = Parameter("alpha", "1.0", frozen=True)
[docs] @staticmethod def evaluate(energy, index, amplitude, reference, lambda_, alpha): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index) cutoff = np.exp(-np.power(energy * lambda_, alpha)) return pwl * cutoff
@property def e_peak(self): r"""Spectral energy distribution peak energy (`~astropy.units.Quantity`). This is the peak in E^2 x dN/dE and is given by: .. math:: E_{Peak} = \left(\frac{2 - \Gamma}{\alpha}\right)^{1/\alpha} / \lambda """ p = self.parameters reference = p["reference"].quantity index = p["index"].quantity lambda_ = p["lambda_"].quantity alpha = p["alpha"].quantity if index >= 2 or lambda_ == 0.0 or alpha == 0.0: return np.nan * reference.unit else: return np.power((2 - index) / alpha, 1 / alpha) / lambda_
[docs]class ExpCutoffPowerLaw3FGLSpectralModel(SpectralModel): r"""Spectral exponential cutoff power-law model used for 3FGL. For more information see :ref:`exp-cutoff-powerlaw-3fgl-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` ecut : `~astropy.units.Quantity` :math:`E_{C}` """ tag = "ExpCutoffPowerLaw3FGLSpectralModel" index = Parameter("index", 1.5) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True) ecut = Parameter("ecut", "10 TeV")
[docs] @staticmethod def evaluate(energy, index, amplitude, reference, ecut): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index) cutoff = np.exp((reference - energy) / ecut) return pwl * cutoff
[docs]class SuperExpCutoffPowerLaw3FGLSpectralModel(SpectralModel): r"""Spectral super exponential cutoff power-law model used for 3FGL. For more information see :ref:`super-exp-cutoff-powerlaw-3fgl-spectral-model`. .. math:: \phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma_1} \exp \left( \left(\frac{E_0}{E_{C}} \right)^{\Gamma_2} - \left(\frac{E}{E_{C}} \right)^{\Gamma_2} \right) Parameters ---------- index_1 : `~astropy.units.Quantity` :math:`\Gamma_1` index_2 : `~astropy.units.Quantity` :math:`\Gamma_2` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` ecut : `~astropy.units.Quantity` :math:`E_{C}` """ tag = "SuperExpCutoffPowerLaw3FGLSpectralModel" amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True) ecut = Parameter("ecut", "10 TeV") index_1 = Parameter("index_1", 1.5) index_2 = Parameter("index_2", 2)
[docs] @staticmethod def evaluate(energy, amplitude, reference, ecut, index_1, index_2): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index_1) cutoff = np.exp((reference / ecut) ** index_2 - (energy / ecut) ** index_2) return pwl * cutoff
[docs]class SuperExpCutoffPowerLaw4FGLSpectralModel(SpectralModel): r"""Spectral super exponential cutoff power-law model used for 4FGL. For more information see :ref:`super-exp-cutoff-powerlaw-4fgl-spectral-model`. Parameters ---------- index_1 : `~astropy.units.Quantity` :math:`\Gamma_1` index_2 : `~astropy.units.Quantity` :math:`\Gamma_2` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` expfactor : `~astropy.units.Quantity` :math:`a`, given as dimensionless value but internally assumes unit of :math:`[E_0]` power :math:`-\Gamma_2` """ tag = "SuperExpCutoffPowerLaw4FGLSpectralModel" amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "1 TeV", frozen=True) expfactor = Parameter("expfactor", "1e-2") index_1 = Parameter("index_1", 1.5) index_2 = Parameter("index_2", 2)
[docs] @staticmethod def evaluate(energy, amplitude, reference, expfactor, index_1, index_2): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index_1) cutoff = np.exp( expfactor / reference.unit ** index_2 * (reference ** index_2 - energy ** index_2) ) return pwl * cutoff
[docs]class LogParabolaSpectralModel(SpectralModel): r"""Spectral log parabola model. For more information see :ref:`logparabola-spectral-model`. Parameters ---------- amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` alpha : `~astropy.units.Quantity` :math:`\alpha` beta : `~astropy.units.Quantity` :math:`\beta` """ tag = "LogParabolaSpectralModel" amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1") reference = Parameter("reference", "10 TeV", frozen=True) alpha = Parameter("alpha", 2) beta = Parameter("beta", 1)
[docs] @classmethod def from_log10(cls, amplitude, reference, alpha, beta): """Construct from :math:`log_{10}` parametrization.""" beta_ = beta / np.log(10) return cls(amplitude=amplitude, reference=reference, alpha=alpha, beta=beta_)
[docs] @staticmethod def evaluate(energy, amplitude, reference, alpha, beta): """Evaluate the model (static function).""" xx = energy / reference exponent = -alpha - beta * np.log(xx) return amplitude * np.power(xx, exponent)
@property def e_peak(self): r"""Spectral energy distribution peak energy (`~astropy.units.Quantity`). This is the peak in E^2 x dN/dE and is given by: .. math:: E_{Peak} = E_{0} \exp{ (2 - \alpha) / (2 * \beta)} """ p = self.parameters reference = p["reference"].quantity alpha = p["alpha"].quantity beta = p["beta"].quantity return reference * np.exp((2 - alpha) / (2 * beta))
[docs]class TemplateSpectralModel(SpectralModel): """A model generated from a table of energy and value arrays. For more information see :ref:`template-spectral-model`. Parameters ---------- energy : `~astropy.units.Quantity` Array of energies at which the model values are given values : array Array with the values of the model at energies ``energy``. norm : float Model scale that is multiplied to the supplied arrays. Defaults to 1. interp_kwargs : dict Interpolation keyword arguments pass to `scipy.interpolate.interp1d`. By default all values outside the interpolation range are set to zero. If you want to apply linear extrapolation you can pass `interp_kwargs={'fill_value': 'extrapolate', 'kind': 'linear'}`. If you want to choose the interpolation scaling applied to values, you can use `interp_kwargs={"values_scale": "log"}`. meta : dict, optional Meta information, meta['filename'] will be used for serialization """ tag = "TemplateSpectralModel" norm = Parameter("norm", 1, unit="") tilt = Parameter("tilt", 0, unit="", frozen=True) reference = Parameter("reference", "1 TeV", frozen=True) def __init__( self, energy, values, norm=norm.quantity, tilt=tilt.quantity, reference=reference.quantity, interp_kwargs=None, meta=None, ): self.energy = energy self.values = u.Quantity(values, copy=False) self.meta = dict() if meta is None else meta interp_kwargs = interp_kwargs or {} interp_kwargs.setdefault("values_scale", "log") interp_kwargs.setdefault("points_scale", ("log",)) self._evaluate = ScaledRegularGridInterpolator( points=(energy,), values=values, **interp_kwargs ) super().__init__(norm=norm, tilt=tilt, reference=reference)
[docs] @classmethod def read_xspec_model(cls, filename, param, **kwargs): """Read XSPEC table model. The input is a table containing absorbed values from a XSPEC model as a function of energy. TODO: Format of the file should be described and discussed in https://gamma-astro-data-formats.readthedocs.io/en/latest/index.html Parameters ---------- filename : str File containing the XSPEC model param : float Model parameter value Examples -------- Fill table from an EBL model (Franceschini, 2008) >>> from gammapy.modeling.models import TemplateSpectralModel >>> filename = '$GAMMAPY_DATA/ebl/ebl_franceschini.fits.gz' >>> table_model = TemplateSpectralModel.read_xspec_model(filename=filename, param=0.3) """ filename = make_path(filename) # Check if parameter value is in range table_param = Table.read(filename, hdu="PARAMETERS") pmin = table_param["MINIMUM"] pmax = table_param["MAXIMUM"] if param < pmin or param > pmax: raise ValueError(f"Out of range: param={param}, min={pmin}, max={pmax}") # Get energy values table_energy = Table.read(filename, hdu="ENERGIES") energy_lo = table_energy["ENERG_LO"] energy_hi = table_energy["ENERG_HI"] # set energy to log-centers energy = np.sqrt(energy_lo * energy_hi) # Get spectrum values (no interpolation, take closest value for param) table_spectra = Table.read(filename, hdu="SPECTRA") idx = np.abs(table_spectra["PARAMVAL"] - param).argmin() values = u.Quantity(table_spectra[idx][1], "", copy=False) # no dimension kwargs.setdefault("interp_kwargs", {"values_scale": "lin"}) return cls(energy=energy, values=values, **kwargs)
[docs] def evaluate(self, energy, norm, tilt, reference): """Evaluate the model (static function).""" values = self._evaluate((energy,), clip=True) tilt_factor = np.power(energy / reference, -tilt) return norm * values * tilt_factor
[docs] def to_dict(self): return { "type": self.tag, "parameters": self.parameters.to_dict()["parameters"], "energy": { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), }, "values": { "data": self.values.data.tolist(), "unit": str(self.values.unit), }, }
[docs] @classmethod def from_dict(cls, data): energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) values = u.Quantity(data["values"]["data"], data["values"]["unit"]) model = cls(energy=energy, values=values) model._update_from_dict(data) return model
[docs]class ScaleSpectralModel(SpectralModel): """Wrapper to scale another spectral model by a norm factor. Parameters ---------- model : `SpectralModel` Spectral model to wrap. norm : float Multiplicative norm factor for the model value. """ tag = "ScaleSpectralModel" norm = Parameter("norm", 1, unit="") def __init__(self, model, norm=norm.quantity): self.model = model super().__init__(norm=norm)
[docs] def evaluate(self, energy, norm): return norm * self.model(energy)
[docs]class Absorption: r"""Gamma-ray absorption models. For more information see :ref:`absorption-spectral-model`. Parameters ---------- energy : `~astropy.units.Quantity` Energy node values param : `~astropy.units.Quantity` Parameter node values data : `~astropy.units.Quantity` Model value filename : str Filename of the absorption model used for serialisation. interp_kwargs : dict Interpolation option passed to `ScaledRegularGridInterpolator`. By default the models are extrapolated outside the range. To prevent this and raise an error instead use interp_kwargs = {"extrapolate": False} """ tag = "Absorption" def __init__(self, energy, param, data, filename=None, interp_kwargs=None): self.data = data self.filename = filename # set values log centers self.param = param self.energy = energy interp_kwargs = interp_kwargs or {} interp_kwargs.setdefault("points_scale", ("log", "lin")) interp_kwargs.setdefault("extrapolate", True) self._evaluate = ScaledRegularGridInterpolator( points=(self.param, self.energy), values=data, **interp_kwargs )
[docs] def to_dict(self): if self.filename is None: return { "type": self.tag, "energy": { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), }, "param": { "data": self.param.data.tolist(), "unit": str(self.param.unit), }, "values": { "data": self.data.data.tolist(), "unit": str(self.data.unit), }, } else: return {"type": self.tag, "filename": self.filename}
[docs] @classmethod def from_dict(cls, data): if "filename" in data: return cls.read(data["filename"]) else: energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) param = u.Quantity(data["param"]["data"], data["param"]["unit"]) values = u.Quantity(data["values"]["data"], data["values"]["unit"]) return cls(energy=energy, param=param, data=values)
[docs] @classmethod def read(cls, filename, interp_kwargs=None): """Build object from an XSPEC model. Todo: Format of XSPEC binary files should be referenced at https://gamma-astro-data-formats.readthedocs.io/en/latest/ Parameters ---------- filename : str File containing the model. interp_kwargs : dict Interpolation option passed to `ScaledRegularGridInterpolator`. Returns ------- absorption : `Absorption` Absorption model. """ # Create EBL data array filename = make_path(filename) table_param = Table.read(filename, hdu="PARAMETERS") # TODO: for some reason the table contain duplicated values param, idx = np.unique(table_param[0]["VALUE"], return_index=True) # Get energy values table_energy = Table.read(filename, hdu="ENERGIES") energy_lo = u.Quantity( table_energy["ENERG_LO"], "keV", copy=False ) # unit not stored in file energy_hi = u.Quantity( table_energy["ENERG_HI"], "keV", copy=False ) # unit not stored in file energy = np.sqrt(energy_lo * energy_hi) # Get spectrum values table_spectra = Table.read(filename, hdu="SPECTRA") data = table_spectra["INTPSPEC"].data[idx, :] return cls( energy=energy, param=param, data=data, filename=filename, interp_kwargs=interp_kwargs, )
[docs] @classmethod def read_builtin(cls, name, interp_kwargs=None): """Read one of the built-in absorption models. Parameters ---------- name : {'franceschini', 'dominguez', 'finke'} name of one of the available model in gammapy-data References ---------- .. [1] Franceschini et al., "Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity", `Link <https://ui.adsabs.harvard.edu/abs/2008A%26A...487..837F>`__ .. [2] Dominguez et al., " Extragalactic background light inferred from AEGIS galaxy-SED-type fractions" `Link <https://ui.adsabs.harvard.edu/abs/2011MNRAS.410.2556D>`__ .. [3] Finke et al., "Modeling the Extragalactic Background Light from Stars and Dust" `Link <https://ui.adsabs.harvard.edu/abs/2010ApJ...712..238F>`__ Returns ------- absorption : `Absorption` Absorption model. """ models = dict() models["franceschini"] = "$GAMMAPY_DATA/ebl/ebl_franceschini.fits.gz" models["dominguez"] = "$GAMMAPY_DATA/ebl/ebl_dominguez11.fits.gz" models["finke"] = "$GAMMAPY_DATA/ebl/frd_abs.fits.gz" return cls.read(models[name], interp_kwargs=interp_kwargs)
[docs] def table_model(self, parameter): """Table model for a given parameter value. Parameters ---------- parameter : float Parameter value. Returns ------- template_model : `TemplateSpectralModel` Template spectral model. """ energy = self.energy values = self.evaluate(energy=energy, parameter=parameter) return TemplateSpectralModel( energy=energy, values=values, interp_kwargs={"values_scale": "log"} )
[docs] def evaluate(self, energy, parameter): """Evaluate model for energy and parameter value.""" return np.clip(self._evaluate((parameter, energy)), 0, 1)
[docs]class AbsorbedSpectralModel(SpectralModel): r"""Spectral model with EBL absorption. For more information see :ref:`absorbed-spectral-model`. Parameters ---------- spectral_model : `SpectralModel` Spectral model. absorption : `Absorption` Absorption model. parameter : float parameter value for absorption model parameter_name : str, optional parameter name alpha_norm: float Norm of the EBL model """ tag = "AbsorbedSpectralModel" def __init__( self, spectral_model, absorption, parameter, parameter_name="redshift", alpha_norm=1.0, ): self.spectral_model = spectral_model self.absorption = absorption self.parameter = parameter self.parameter_name = parameter_name min_ = self.absorption.param.min() max_ = self.absorption.param.max() par = Parameter(parameter_name, parameter, min=min_, max=max_, frozen=True) alpha_norm = Parameter("alpha_norm", alpha_norm, frozen=True) parameters = Parameters([par, alpha_norm]) super()._init_from_parameters(parameters) @property def parameters(self): return self._parameters + self.spectral_model.parameters
[docs] def evaluate(self, energy, **kwargs): """Evaluate the model at a given energy.""" # assign redshift value and remove it from dictionary # since it does not belong to the spectral model parameter = kwargs[self.parameter_name] del kwargs[self.parameter_name] del kwargs["alpha_norm"] dnde = self.spectral_model.evaluate(energy=energy, **kwargs) absorption = self.absorption.evaluate(energy=energy, parameter=parameter) # Power rule: (e ^ a) ^ b = e ^ (a * b) absorption = np.power(absorption, self.alpha_norm.value) return dnde * absorption
[docs] def to_dict(self): return { "type": self.tag, "base_model": self.spectral_model.to_dict(), "absorption": self.absorption.to_dict(), "absorption_parameter": { "name": self.parameter_name, "value": self.parameter, }, "parameters": self._parameters.to_dict()["parameters"], }
[docs] @classmethod def from_dict(cls, data): from gammapy.modeling.models import SPECTRAL_MODELS model_class = SPECTRAL_MODELS.get_cls(data["base_model"]["type"]) model = cls( spectral_model=model_class.from_dict(data["base_model"]), absorption=Absorption.from_dict(data["absorption"]), parameter=data["absorption_parameter"]["value"], parameter_name=data["absorption_parameter"]["name"], ) model._update_from_dict(data) return model
[docs]class NaimaSpectralModel(SpectralModel): r"""A wrapper for Naima models. For more information see :ref:`naima-spectral-model`. Parameters ---------- radiative_model : `~naima.models.BaseRadiative` An instance of a radiative model defined in `~naima.models` distance : `~astropy.units.Quantity`, optional Distance to the source. If set to 0, the intrinsic differential luminosity will be returned. Default is 1 kpc seed : str or list of str, optional Seed photon field(s) to be considered for the `radiative_model` flux computation, in case of a `~naima.models.InverseCompton` model. It can be a subset of the `seed_photon_fields` list defining the `radiative_model`. Default is the whole list of photon fields """ tag = "NaimaSpectralModel" def __init__(self, radiative_model, distance=1.0 * u.kpc, seed=None): import naima self.radiative_model = radiative_model self._particle_distribution = self.radiative_model.particle_distribution self.distance = u.Quantity(distance) self.seed = seed if isinstance(self._particle_distribution, naima.models.TableModel): param_names = ["amplitude"] else: param_names = self._particle_distribution.param_names parameters = [] for name in param_names: value = getattr(self._particle_distribution, name) parameter = Parameter(name, value) parameters.append(parameter) # In case of a synchrotron radiative model, append B to the fittable parameters if "B" in self.radiative_model.param_names: value = getattr(self.radiative_model, "B") parameter = Parameter("B", value) parameters.append(parameter) super()._init_from_parameters(parameters)
[docs] def evaluate(self, energy, **kwargs): """Evaluate the model.""" for name, value in kwargs.items(): setattr(self._particle_distribution, name, value) # Flattening the input energy list and later reshaping the flux list # prevents some radiative models from displaying broadcasting problems. if self.seed is None: dnde = self.radiative_model.flux(energy.flatten(), distance=self.distance) else: dnde = self.radiative_model.flux( energy.flatten(), seed=self.seed, distance=self.distance ) dnde = dnde.reshape(energy.shape) unit = 1 / (energy.unit * u.cm ** 2 * u.s) return dnde.to(unit)
[docs] @classmethod def from_dict(cls, data): raise NotImplementedError( "Currently the NaimaSpectralModel cannot be read from YAML" )
[docs]class GaussianSpectralModel(SpectralModel): r"""Gaussian spectral model. For more information see :ref:`gaussian-spectral-model`. Parameters ---------- norm : `~astropy.units.Quantity` :math:`N_0` mean : `~astropy.units.Quantity` :math:`\bar{E}` sigma : `~astropy.units.Quantity` :math:`\sigma` """ tag = "GaussianSpectralModel" norm = Parameter("norm", 1e-12 * u.Unit("cm-2 s-1")) mean = Parameter("mean", 1 * u.TeV) sigma = Parameter("sigma", 2 * u.TeV)
[docs] @staticmethod def evaluate(energy, norm, mean, sigma): return ( norm / (sigma * np.sqrt(2 * np.pi)) * np.exp(-((energy - mean) ** 2) / (2 * sigma ** 2)) )
[docs] def integral(self, emin, emax, **kwargs): r"""Integrate Gaussian analytically. .. math:: F(E_{min}, E_{max}) = \frac{N_0}{2} \left[ erf(\frac{E - \bar{E}}{\sqrt{2} \sigma})\right]_{E_{min}}^{E_{max}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range """ # kwargs are passed to this function but not used # this is to get a consistent API with SpectralModel.integral() pars = self.parameters u_min = ( (emin - pars["mean"].quantity) / (np.sqrt(2) * pars["sigma"].quantity) ).to_value("") u_max = ( (emax - pars["mean"].quantity) / (np.sqrt(2) * pars["sigma"].quantity) ).to_value("") return ( pars["norm"].quantity / 2 * (scipy.special.erf(u_max) - scipy.special.erf(u_min)) )
[docs] def energy_flux(self, emin, emax): r"""Compute energy flux in given energy range analytically. .. math:: G(E_{min}, E_{max}) = \frac{N_0 \sigma}{\sqrt{2*\pi}}* \left[ - \exp(\frac{E_{min}-\bar{E}}{\sqrt{2} \sigma}) \right]_{E_{min}}^{E_{max}} + \frac{N_0 * \bar{E}}{2} \left[ erf(\frac{E - \bar{E}}{\sqrt{2} \sigma}) \right]_{E_{min}}^{E_{max}} Parameters ---------- emin, emax : `~astropy.units.Quantity` Lower and upper bound of integration range. """ pars = self.parameters u_min = ( (emin - pars["mean"].quantity) / (np.sqrt(2) * pars["sigma"].quantity) ).to_value("") u_max = ( (emax - pars["mean"].quantity) / (np.sqrt(2) * pars["sigma"].quantity) ).to_value("") a = pars["norm"].quantity * pars["sigma"].quantity / np.sqrt(2 * np.pi) b = pars["norm"].quantity * pars["mean"].quantity / 2 return a * (np.exp(-(u_min ** 2)) - np.exp(-(u_max ** 2))) + b * ( scipy.special.erf(u_max) - scipy.special.erf(u_min) )