ASmoothMapEstimator¶
-
class
gammapy.detect.ASmoothMapEstimator(scales, kernel=<class 'astropy.convolution.kernels.Gaussian2DKernel'>, method='simple', threshold=5)[source]¶ Bases:
objectAdaptively smooth counts image.
Achieves a roughly constant significance of features across the whole image.
Algorithm based on https://ui.adsabs.harvard.edu/abs/2006MNRAS.368…65E
The algorithm was slightly adapted to also allow Li & Ma and TS to estimate the significance of a feature in the image.
- Parameters
- scales
Quantity Smoothing scales.
- kernel
astropy.convolution.Kernel Smoothing kernel.
- method{‘simple’, ‘asmooth’, ‘lima’}
Significance estimation method.
- thresholdfloat
Significance threshold.
- scales
Methods Summary
estimate_maps(self, counts, background[, …])Run adaptive smoothing on input Maps.
get_scales(n_scales[, factor, kernel])Create list of Gaussian widths.
kernels(self, pixel_scale)Ring kernels according to the specified method.
run(self, dataset)Run adaptive smoothing on input MapDataset.
Methods Documentation
-
estimate_maps(self, counts, background, exposure=None)[source]¶ Run adaptive smoothing on input Maps.
-
static
get_scales(n_scales, factor=1.4142135623730951, kernel=<class 'astropy.convolution.kernels.Gaussian2DKernel'>)[source]¶ Create list of Gaussian widths.
-
run(self, dataset)[source]¶ Run adaptive smoothing on input MapDataset. The latter should have
- Parameters
- dataset
MapDatasetorMapDatasetOnOff the input dataset (with one bin in energy at most)
- Returns
- ——-
- imagesdict of
WcsNDMap - Smoothed images; keys are:
‘counts’
‘background’
‘flux’ (optional)
‘scales’
‘significance’.
- dataset