TSMapEstimator¶
-
class
gammapy.detect.TSMapEstimator(method='root brentq', error_method='covar', error_sigma=1, ul_method='covar', ul_sigma=2, threshold=None, rtol=0.001)[source]¶ Bases:
objectCompute TS map from a MapDataset using different optimization methods.
The map is computed fitting by a single parameter amplitude fit. The fit is simplified by finding roots of the the derivative of the fit statistics using various root finding algorithms. The approach is sescribed in Appendix A in Stewart (2009).
- Parameters
- methodstr (‘root’)
The following options are available:
'root brentq'(default)Fit amplitude by finding the roots of the the derivative of the fit statistics using the brentq method.
'root newton'Fit amplitude by finding the roots of the the derivative of the fit statistics using Newton’s method.
'leastsq iter'Fit the amplitude by an iterative least square fit, that can be solved analytically.
- error_method[‘covar’, ‘conf’]
Error estimation method.
- error_sigmaint (1)
Sigma for flux error.
- ul_method[‘covar’, ‘conf’]
Upper limit estimation method.
- ul_sigmaint (2)
Sigma for flux upper limits.
- thresholdfloat (None)
If the TS value corresponding to the initial flux estimate is not above this threshold, the optimizing step is omitted to save computing time.
- rtolfloat (0.001)
Relative precision of the flux estimate. Used as a stopping criterion for the amplitude fit.
Notes
Negative \(TS\) values are defined as following:
\[\begin{split}TS = \left \{ \begin{array}{ll} -TS \text{ if } F < 0 \\ TS \text{ else} \end{array} \right.\end{split}\]Where \(F\) is the fitted flux amplitude.
References
Methods Summary
flux_default(dataset, kernel)Estimate default flux map using a given kernel.
mask_default(exposure, background, kernel)Compute default mask where to estimate TS values.
run(self, dataset, kernel[, which, …])Run TS map estimation.
sqrt_ts(map_ts)Compute sqrt(TS) map.
Methods Documentation
-
static
flux_default(dataset, kernel)[source]¶ Estimate default flux map using a given kernel.
- Parameters
- dataset
MapDataset Input dataset.
- kernel
Kernel2D Source model kernel.
- dataset
- Returns
- flux_approx
WcsNDMap Approximate flux map (2D).
- flux_approx
-
static
mask_default(exposure, background, kernel)[source]¶ Compute default mask where to estimate TS values.
- Parameters
- exposure
Map Input exposure map.
- background
Map Input background map.
- kernel
astropy.convolution.Kernel2D Source model kernel.
- exposure
- Returns
- mask
gammapy.maps.WcsNDMap Mask map.
- mask
-
run(self, dataset, kernel, which='all', downsampling_factor=None)[source]¶ Run TS map estimation.
Requires a MapDataset with counts, exposure and background_model properly set to run.
- Parameters
- kernel
astropy.convolution.Kernel2Dor 2Dndarray Source model kernel.
- whichlist of str or ‘all’
Which maps to compute.
- downsampling_factorint
Sample down the input maps to speed up the computation. Only integer values that are a multiple of 2 are allowed. Note that the kernel is not sampled down, but must be provided with the downsampled bin size.
- kernel
- Returns
- mapsdict
Result maps.
-
static
sqrt_ts(map_ts)[source]¶ Compute sqrt(TS) map.
Compute sqrt(TS) as defined by:
\[\begin{split}\sqrt{TS} = \left \{ \begin{array}{ll} -\sqrt{-TS} & : \text{if} \ TS < 0 \\ \sqrt{TS} & : \text{else} \end{array} \right.\end{split}\]- Parameters
- map_ts
gammapy.maps.WcsNDMap Input TS map.
- map_ts
- Returns
- sqrt_ts
gammapy.maps.WcsNDMap Sqrt(TS) map.
- sqrt_ts