ConstantTemporalModel¶
-
class
gammapy.modeling.models.
ConstantTemporalModel
(**kwargs)[source]¶ Bases:
gammapy.modeling.models.TemporalModel
Constant temporal model.
- Parameters
- normfloat
The normalization of the constant temporal model
Attributes Summary
A model parameter.
Parameters (
Parameters
)Methods Summary
copy
(self)A deep copy.
create
(tag, \*args, \*\*kwargs)Create a model instance.
evaluate_norm_at_time
(self, time)Evaluate for a given time.
from_dict
(data)sample_time
(self, n_events, t_min, t_max[, …])Sample arrival times of events.
to_dict
(self)Create dict for YAML serialisation
Attributes Documentation
-
default_parameters
= <gammapy.modeling.parameter.Parameters object>¶
-
norm
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
parameters
¶ Parameters (
Parameters
)
-
tag
= 'ConstantTemporalModel'¶
Methods Documentation
-
copy
(self)¶ A deep copy.
-
static
create
(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
evaluate_norm_at_time
(self, time)[source]¶ Evaluate for a given time.
- Parameters
- timearray_like
Time since the
reference
time.
- Returns
- normfloat
Mean norm
-
classmethod
from_dict
(data)¶
-
sample_time
(self, n_events, t_min, t_max, random_state=0)[source]¶ Sample arrival times of events.
- Parameters
- n_eventsint
Number of events to sample.
- t_min
Time
Start time of the sampling.
- t_max
Time
Stop time of the sampling.
- random_state{int, ‘random-seed’, ‘global-rng’,
RandomState
} Defines random number generator initialisation. Passed to
get_random_state
.
- Returns
- time
Quantity
Array with times of the sampled events.
- time
-
to_dict
(self)¶ Create dict for YAML serialisation