ConstantTemporalModel¶
-
class
gammapy.modeling.models.ConstantTemporalModel(**kwargs)[source]¶ Bases:
gammapy.modeling.models.TemporalModelConstant temporal model.
- Parameters
- normfloat
The normalization of the constant temporal model
Attributes Summary
A model parameter.
Parameters (
Parameters)Methods Summary
copy(self)A deep copy.
create(tag, \*args, \*\*kwargs)Create a model instance.
evaluate_norm_at_time(self, time)Evaluate for a given time.
from_dict(data)sample_time(self, n_events, t_min, t_max[, …])Sample arrival times of events.
to_dict(self)Create dict for YAML serialisation
Attributes Documentation
-
default_parameters= <gammapy.modeling.parameter.Parameters object>¶
-
norm¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
parameters¶ Parameters (
Parameters)
-
tag= 'ConstantTemporalModel'¶
Methods Documentation
-
copy(self)¶ A deep copy.
-
static
create(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
evaluate_norm_at_time(self, time)[source]¶ Evaluate for a given time.
- Parameters
- timearray_like
Time since the
referencetime.
- Returns
- normfloat
Mean norm
-
classmethod
from_dict(data)¶
-
sample_time(self, n_events, t_min, t_max, random_state=0)[source]¶ Sample arrival times of events.
- Parameters
- n_eventsint
Number of events to sample.
- t_min
Time Start time of the sampling.
- t_max
Time Stop time of the sampling.
- random_state{int, ‘random-seed’, ‘global-rng’,
RandomState} Defines random number generator initialisation. Passed to
get_random_state.
- Returns
- time
Quantity Array with times of the sampled events.
- time
-
to_dict(self)¶ Create dict for YAML serialisation