gammapy
0.17

Getting Started

  • Overview
    • Workflow
    • Data reduction
    • Datasets
    • Modeling and Fitting
    • Time analysis
    • Simulation
    • Other topics
    • What next?
      • The Data Level 3 (DL3) format
        • Data levels in CTA
        • Application in gammapy
  • Installation
    • Using Anaconda
    • Using other package managers
    • Download tutorials
    • What next?
      • Gammapy Dependencies
        • Required dependencies
        • Optional dependencies
        • Versions
      • Other package managers
      • Installation with pip
  • Getting Started
    • Help!?
    • Check your setup
    • Use Gammapy
      • Python
      • IPython
      • Python script
      • Jupyter notebooks
    • Install issues
  • Tutorials
    • Getting started
      • First analysis with gammapy high level interface
        • Prerequisites:
        • Context
        • Proposed approach:
        • Setup
        • Analysis configuration
        • Running the analysis
        • Data reduction
        • Save dataset to disk
        • Model fitting
        • What’s next
      • First analysis with gammapy library API
        • Prerequisites:
        • Context
        • Proposed approach:
        • Setup
        • Defining the datastore and selecting observations
        • Preparing reduced datasets geometry
        • Data reduction
        • Save dataset to disk
        • Define the model
        • Fit the model
        • Plot the fitted spectrum
    • Core tutorials
      • CTA with Gammapy
        • Introduction
        • Tutorial overview
        • Setup
        • CTA 1DC
        • Events
        • IRFs
        • Source models
        • CTA performance files
        • Exercises
        • Next steps
      • H.E.S.S. data with Gammapy
        • DL3 DR1
        • Exercises
        • Next steps
      • Fermi-LAT data with Gammapy
        • Introduction
        • Setup
        • Events
        • Counts
        • Exposure
        • Galactic diffuse background
        • Isotropic diffuse background
        • PSF
        • Fit
        • Exercises
        • Summary
      • CTA data analysis with Gammapy
        • Introduction
        • Setup
        • Select observations
        • Make sky images
        • Source Detection
        • Spatial analysis
        • Spectrum
        • Exercises
        • What next?
      • 3D analysis
        • Analysis configuration
        • Configuration for stacked and joint analysis
        • Stacked analysis
        • Joint analysis
        • Summary
        • Exercises
      • 3D simulation and fitting
        • Prerequisites
        • Context
        • Proposed approach:
        • Imports and versions
        • Simulation
        • Fit
      • Spectral analysis with Gammapy
        • Prerequisites
        • Context
        • Introduction
        • Setup
        • Load Data
        • Define Target Region
        • Create exclusion mask
        • Run data reduction chain
        • Plot off regions
        • Source statistic
        • Fit spectrum
        • Compute Flux Points
        • Stack observations
        • Exercises
        • What next?
      • Flux point fitting in Gammapy
        • Prerequisites
        • Context
        • Proposed approach
        • Setup
        • Load spectral points
        • Power Law Fit
        • Exponential Cut-Off Powerlaw Fit
        • Log-Parabola Fit
        • Exercises
        • What next?
      • Light curve estimation
        • Prerequisites
        • Context
        • Proposed approach
        • Setup
        • Analysis configuration
        • Light Curve estimation: by observation
        • Running the light curve extraction in 1D
        • Night-wise LC estimation
        • What next?
      • Light curve - Flare
        • Prerequisites:
        • Context
        • Proposed approach:
        • Setup
        • Select the data
        • Define time intervals
        • Filter the observations list in time intervals
        • Building 1D datasets from the new observations
        • Define the Model
        • Extract the light curve
      • Binned light curve simulation and fitting
        • Prerequisites:
        • Context
        • Proposed approach:
        • Setup
        • Setup
        • Simulating a light curve
        • Extract the lightcurve
        • Fit the datasets
        • Exercises
      • Spectrum simulation
        • Prerequisites
        • Context
        • Proposed approach:
        • Setup
        • Simulation of a single spectrum
        • Exercises
      • Modeling and fitting 2D images using Gammapy
        • Prerequisites:
        • Context:
        • Objective:
        • Proposed approach:
        • Setup
        • Creating the config file
        • Getting the reduced dataset
        • Modelling
      • Ring Background Estimation
        • Context:
        • Objective:
        • Proposed approach:
        • Setup
        • Creating the config file
        • Getting the reduced dataset
        • Extracting the ring background
        • Compute correlated significance and correlated excess maps
    • Advanced tutorials
      • Joint modeling, fitting, and serialization
        • Prerequisites
        • Context
        • Proposed approach
        • The setup
        • Data and models files
        • Reading different datasets
        • Datasets serialization
        • Joint analysis
      • Spectral analysis of extended sources
        • Prerequisites:
        • Context
        • Proposed approach:
        • Setup
        • Select the data
        • Prepare the datasets creation
        • Perform the data reduction loop.
        • Explore the results
        • Perform spectral model fitting
      • Source detection with Gammapy
        • Context
        • Proposed approach
        • Setup
        • Read in input images
        • Adaptive smoothing
        • TS map estimation
        • Source candidates
        • What next?
      • Estimation of the CTA point source sensitivity
        • Introduction
        • Setup
        • Define analysis region and energy binning
        • Load IRFs and prepare dataset
        • Compute sensitivity
        • Results
        • Exercises
      • Modeling and fitting 2D images using Gammapy
        • Prerequisites:
        • Context:
        • Objective:
        • Proposed approach:
        • Setup
        • Creating the config file
        • Getting the reduced dataset
        • Modelling
      • Ring Background Estimation
        • Context:
        • Objective:
        • Proposed approach:
        • Setup
        • Creating the config file
        • Getting the reduced dataset
        • Extracting the ring background
        • Compute correlated significance and correlated excess maps
      • Creating exclusion masks
        • Introduction
        • Setup
        • Create the mask from a list of regions
        • Create the mask from a catalog of sources
        • Create the mask from statistically significant pixels in a dataset
      • Getting started with Gammapy
        • Introduction
        • Setup
        • Maps
        • Event lists
        • Source catalogs
        • Spectral models and flux points
        • What next?
      • Gammapy Maps
        • Introduction
        • Setup
        • Creating WCS Maps
        • Accessing and Modifying Data
        • Reading and Writing
        • Visualizing and Plotting
        • Interpolating and Miscellaneous
      • Modeling and fitting
        • Prerequisites
        • Proposed approach
        • The setup
        • Model and dataset
        • Fitting options
        • Covariance and parameters errors
        • Inspecting fit statistic profiles
        • Confidence contours
      • Gammapy Models
      • Setup
      • Spectral Models
      • Spatial Models
      • SkyModel and SkyDiffuseCube
      • Model Lists and Serialisation
      • Implementing a Custom Model
      • Source catalogs
        • List available catalogs
        • Load catalogs
        • Select a source
        • Pretty-print source information
        • Source models
        • Flux points
        • Lightcurves
        • Catalog table and source dictionary
        • Exercises
        • Next steps
    • Scripts
      • Survey map
    • Extra topics
      • Dark matter utilities
        • Introduction
        • Setup
        • Profiles
        • J Factors
        • Gamma-ray spectra at production
        • Flux maps
      • Make template background model
        • Introduction
        • Setup
        • Select off data
        • Background model
        • Zenith dependence
        • Index tables
        • Exercises
      • Fitting and error estimation with MCMC
        • Introduction
        • Simulate an observation
        • Estimate parameter correlations with MCMC
        • Plot the results
        • Plot the model dispersion
        • Fun Zone
        • PeVatrons in CTA ?
      • Pulsar analysis with Gammapy
        • Introduction
        • Opening the data
        • Phasogram
        • Phase-resolved map
        • Phase-resolved spectrum
  • How To
    • Access IACT data
    • Check IRFs
    • Extract 1D spectra
    • Extract a lightcurve
    • Compute source significance
    • Compute cumulative significance
    • Detect sources in a map
    • Astrophysical source modeling
  • Glossary and references
    • Glossary
    • Publications
    • Other gamma-ray packages
    • Other useful packages
  • Changelog
    • 0.17 (Apr 1, 2020)
      • Summary
      • Pull Requests
    • 0.16 (Feb 1, 2020)
      • Summary
      • Pull Requests
    • 0.15 (Dec 3, 2019)
      • Summary
      • Pull Requests
    • 0.14 (Sep 30, 2019)
      • Summary
      • Pull Requests
    • 0.13 (Jul 26, 2019)
      • Summary
      • Pull Requests
    • 0.12 (May 30, 2019)
      • Summary
      • Pull Requests
    • 0.11 (Mar 29, 2019)
      • Summary
      • Pull requests
    • 0.10 (Jan 28, 2019)
      • Summary
      • Pull requests
    • 0.9 (Nov 29, 2018)
      • Summary
      • Pull requests
    • 0.8 (Sep 23, 2018)
      • Summary
      • Pull requests
    • 0.7 (Feb 28, 2018)
      • Summary
      • Pull requests
    • 0.6 (Apr 28, 2017)
      • Summary
      • Pull requests
    • 0.5 (Nov 22, 2016)
      • Summary
      • Pull requests
    • 0.4 (Apr 20, 2016)
      • Summary
      • Pull requests
    • 0.3 (Aug 13, 2015)
      • Summary
      • Pull requests
    • 0.2 (Apr 13, 2015)
      • Summary
      • Pull requests
    • 0.1 (Aug 25, 2014)
      • Summary
      • Pull requests

Gammapy Package

  • analysis - High-level interface
    • Introduction
    • Getting started
    • Configuration and methods
      • General settings
      • Observations selection
      • Data reduction and datasets
      • Model
      • Fitting
      • Flux points
      • Residuals
      • Using the high-level interface
    • Reference/API
      • gammapy.analysis Package
        • Classes
  • data - DL3 data access and observations
    • Introduction
    • Getting Started
    • Using gammapy.data
    • Reference/API
      • gammapy.data Package
        • Classes
        • Variables
  • makers - Data reduction
    • Introduction
    • Getting Started
    • Safe Data Range Handling
    • Stacking of Datasets
    • Combining Data Reduction Steps
      • Reflected regions background
        • Overview
        • Using regions
        • The reflected region finder
        • Using the reflected background estimator
      • Ring background
        • Overview
    • Using gammapy.makers
    • Reference/API
      • gammapy.makers Package
        • Classes
  • datasets - Reduced datasets
    • Introduction
    • Getting Started
    • Reference/API
      • gammapy.datasets Package
        • Classes
  • modeling - Models and fitting
    • Introduction
    • Getting Started
    • Tutorials
    • Reference/API
      • gammapy.modeling Package
        • Functions
        • Classes
      • gammapy.modeling.models Package
        • Functions
        • Classes
        • Variables
  • estimators - High level estimators
    • Introduction
    • Getting Started
      • Flux and significance maps
        • Introduction
        • Computation of TS images
        • Computation of Li & Ma significance images
        • Using gammapy.detect
      • Lightcurves
        • Lightcurve
        • Light Curve Extraction
        • Tutorials
    • Reference/API
      • gammapy.estimators Package
        • Classes
  • time - Time analysis
    • Introduction
    • Variability and periodicity tests
    • Tutorials
    • Using gammapy.time
      • Period detection and plotting
        • Introduction
        • Getting Started
        • Example
    • Reference/API
      • gammapy.time Package
        • Functions
  • irf - Instrument response functions
    • Introduction
    • Getting Started
    • Effective area
    • Background
    • PSF
    • Energy Dispersion
    • Using gammapy.irf
      • IRF Theory
        • Modeling the expected number of detected events
        • The Instrument Response Functions
      • Effective area
      • Energy dispersion
      • Point Spread Function
    • Reference/API
      • gammapy.irf Package
        • Functions
        • Classes
  • maps - Sky maps
    • Introduction
    • Getting Started
      • Constructing with Factory Methods
      • Indexing and Slicing
      • Accessor Methods
      • Interface with MapCoord and SkyCoord
      • Differential and integral maps
      • MapCoord
      • Interpolation
      • Iterating by image
      • FITS I/O
      • Visualization
    • Examples
      • Creating counts cubes from event lists
      • Generating a Cutout of a Model Cube
    • Using gammapy.maps
      • HEALPix-based Maps
        • HEALPix Geometry
    • Reference/API
      • gammapy.maps Package
        • Classes
  • catalog - Source catalogs
    • Introduction
    • Tutorials
    • Reference/API
      • gammapy.catalog Package
        • Classes
        • Variables
  • astro - Astrophysics
    • Introduction
    • Getting Started
    • Sub-packages
      • Astrophysical source models (gammapy.astro.source)
        • Introduction
        • Getting Started
        • Using gammapy.astro.source
        • Reference/API
      • Astrophysical source population models (gammapy.astro.population)
        • Introduction
        • Getting Started
        • Reference/API
      • Dark matter (gammapy.astro.darkmatter)
        • Introduction
        • Other packages
        • Using gammapy.spectrum
        • Reference/API
  • scripts - Command line tools
    • Introduction
      • Execute
      • Command not found
      • Example
    • Reference
      • gammapy
        • analysis
        • check
        • download
        • info
        • jupyter
    • Implementation
    • Limitations
    • Plan
    • Write your own CLI
    • Reference/API
  • stats - Statistics
    • Introduction
    • General notions
      • Counts and fit statistics
      • Estimating Delta TS
    • Counts statistics classes
      • Cash counts statistic
        • Excess and Significance
        • Excess errors
      • WStat counts statistic
        • Excess and Significance
        • Excess errors
      • Notations
    • Using gammapy.stats
      • Fit statistics
        • Introduction
        • Cash : Poisson data with background model
        • WStat : Poisson data with background measurement
        • Further references
      • Derivation of the WStat formula
        • Profile Likelihood
        • Goodness of fit
        • Final result
        • Special cases
      • Feldman and Cousins Confidence Intervals
        • Examples
        • Acceptance Interval Fixing
        • Sensitivity
        • General Case
    • Reference/API
      • gammapy.stats Package
        • Functions
        • Classes
  • visualization - Plotting and Visualization
    • Getting Started
      • Colormaps
      • Survey Panel Plots
    • Reference/API
      • gammapy.visualization Package
        • Functions
        • Classes
  • utils - Utilities
    • Introduction
    • Time handling in Gammapy
      • Time format and scale
      • Mission elapsed times (MET)
      • Time differences
    • Reference/API
      • gammapy.utils.units Module
        • Functions
      • gammapy.utils.coordinates Package
        • Functions
        • Variables
      • gammapy.utils.integrate Module
        • Functions
      • gammapy.utils.interpolation Module
        • Functions
        • Classes
      • gammapy.utils.table Module
        • Functions
      • gammapy.utils.fits Module
        • Gammapy FITS utilities
        • Functions
        • Classes
      • gammapy.utils.random Package
        • Functions
        • Classes
      • gammapy.utils.regions Module
        • Functions
      • gammapy.utils.scripts Module
        • Functions
      • gammapy.utils.testing Module
        • Functions
        • Classes
      • gammapy.utils.nddata Module
        • Classes
      • gammapy.utils.time Module
        • Functions

Developer Documentation

  • Developer documentation
    • How to contribute to Gammapy?
    • Gammapy project setup
    • Developer HOWTO
    • How to make a Gammapy release
    • PIGs
      • PIG 1 - PIG purpose and guidelines
      • PIG 2 - Organization of low-level analysis code
      • PIG 3 - Plan for dropping Python 2.7 support
      • PIG 4 - Setup for tutorial notebooks and data
      • PIG 5 - Gammapy 1.0 Roadmap
      • PIG 6 - CTA observation handling
      • PIG 7 - Models
      • PIG 8 - Datasets
      • PIG 9 - Event Sampling
      • PIG 10 - Regions
      • PIG 11 - Light curves
      • PIG 12 - High-level interface
      • PIG 13 - Gammapy dependencies and distribution
      • PIG 14 - Uncertainty estimation
      • PIG 16 - Gammapy package structure
      • PIG 18 - Documentation
      • PIG 19 - Gammapy package structure follow up
    • Data Formats
gammapy
  • Docs »
  • Developer documentation »
  • PIGs
  • View page source

PIGs¶

PIGs (proposals for improvement of Gammapy) are short documents proposing a major addition or change to Gammapy. See PIG 1 - PIG purpose and guidelines for further information.

Below is a list of merged PIGs, i.e. the ones that are finalised, with status “accepted” or “rejected” or “withdrawn”. The ones with “draft” status, i.e. that are under discussion, can be found on Github as pull requests with the “pig” label .

  • PIG 1 - PIG purpose and guidelines
  • PIG 2 - Organization of low-level analysis code
  • PIG 3 - Plan for dropping Python 2.7 support
  • PIG 4 - Setup for tutorial notebooks and data
  • PIG 5 - Gammapy 1.0 Roadmap
  • PIG 6 - CTA observation handling
  • PIG 7 - Models
  • PIG 8 - Datasets
  • PIG 9 - Event Sampling
  • PIG 10 - Regions
  • PIG 11 - Light curves
  • PIG 12 - High-level interface
  • PIG 13 - Gammapy dependencies and distribution
  • PIG 14 - Uncertainty estimation
  • PIG 16 - Gammapy package structure
  • PIG 18 - Documentation
  • PIG 19 - Gammapy package structure follow up
Next Previous

© Copyright 2020, The Gammapy developers Last updated on 01 Apr 2020.

Built with Sphinx using a theme provided by Read the Docs.