Pulsar#
- class gammapy.astro.source.Pulsar(P_0='0.1 s', B='1e10 G', n=3, I=<Quantity 1.e+45 cm2 g>, R=<Quantity 1000000. cm>, age=None, L_0=None)[source]#
Bases:
object
Magnetic dipole spin-down pulsar model.
- Parameters
- P_0float
Period at birth
- B
Quantity
Magnetic field strength at the poles (Gauss)
- nfloat
Spin-down braking index
- Ifloat
Moment of inertia
- Rfloat
Radius
Methods Summary
Total energy released by a given time.
Spin down luminosity.
Magnetic field at polar cap (assumed constant).
period
(t)Rotation period.
period_dot
(t)Period derivative at age t.
tau
(t)Characteristic age at real age t.
Methods Documentation
- energy_integrated(t)[source]#
Total energy released by a given time.
Time-integrated spin-down luminosity since birth.
\[E(t) = \dot{L}_0 \tau_0 \frac{t}{t + \tau_0}\]- Parameters
- t
Quantity
Time after birth of the pulsar.
- t
- luminosity_spindown(t)[source]#
Spin down luminosity.
\[\dot{L}(t) = \dot{L}_0 \left(1 + \frac{t}{\tau_0}\right)^{-\frac{n + 1}{n - 1}}\]- Parameters
- t
Quantity
Time after birth of the pulsar
- t
- magnetic_field(t)[source]#
Magnetic field at polar cap (assumed constant).
\[B = 3.2 \cdot 10^{19} (P\dot{P})^{1/2} \text{ Gauss}\]- Parameters
- t
Quantity
Time after birth of the pulsar.
- t
- period(t)[source]#
Rotation period.
\[P(t) = P_0 \left(1 + \frac{t}{\tau_0}\right)^{\frac{1}{n - 1}}\]- Parameters
- t
Quantity
Time after birth of the pulsar
- t