FluxPoints#
- class gammapy.estimators.FluxPoints(data, reference_model, meta=None, gti=None, filter_success_nan=True)[source]#
Bases:
gammapy.estimators.map.core.FluxMaps
Flux points container.
The supported formats are described here: SED
In summary, the following formats and minimum required columns are:
Format
dnde
: columnse_ref
anddnde
Format
e2dnde
: columnse_ref
,e2dnde
Format
flux
: columnse_min
,e_max
,flux
Format
eflux
: columnse_min
,e_max
,eflux
- Parameters
- table
Table
Table with flux point data
- table
Examples
The
FluxPoints
object is most easily created by reading a file with flux points given in one of the formats documented above:>>> from gammapy.estimators import FluxPoints >>> filename = '$GAMMAPY_DATA/hawc_crab/HAWC19_flux_points.fits' >>> flux_points = FluxPoints.read(filename) >>> flux_points.plot()
An instance of
FluxPoints
can also be created by passing an instance ofastropy.table.Table
, which contains the required columns, such as'e_ref'
and'dnde'
. The correspondingsed_type
has to be defined in the meta data of the table:>>> import numpy as np >>> from astropy import units as u >>> from astropy.table import Table >>> from gammapy.estimators import FluxPoints >>> from gammapy.modeling.models import PowerLawSpectralModel >>> table = Table() >>> pwl = PowerLawSpectralModel() >>> e_ref = np.geomspace(1, 100, 7) * u.TeV >>> table["e_ref"] = e_ref >>> table["dnde"] = pwl(e_ref) >>> table["dnde_err"] = pwl.evaluate_error(e_ref)[0] >>> table.meta["SED_TYPE"] = "dnde" >>> flux_points = FluxPoints.from_table(table) >>> flux_points.plot(sed_type="flux")
If you have flux points in a different data format, the format can be changed by renaming the table columns and adding meta data:
>>> from astropy import units as u >>> from astropy.table import Table >>> from gammapy.estimators import FluxPoints >>> from gammapy.utils.scripts import make_path
>>> filename = make_path('$GAMMAPY_DATA/tests/spectrum/flux_points/flux_points_ctb_37b.txt') >>> table = Table.read(filename ,format='ascii.csv', delimiter=' ', comment='#') >>> table.rename_column('Differential_Flux', 'dnde') >>> table['dnde'].unit = 'cm-2 s-1 TeV-1'
>>> table.rename_column('lower_error', 'dnde_errn') >>> table['dnde_errn'].unit = 'cm-2 s-1 TeV-1'
>>> table.rename_column('upper_error', 'dnde_errp') >>> table['dnde_errp'].unit = 'cm-2 s-1 TeV-1'
>>> table.rename_column('E', 'e_ref') >>> table['e_ref'].unit = 'TeV'
>>> flux_points = FluxPoints.from_table(table, sed_type="dnde") >>> flux_points.plot(sed_type="e2dnde")
Note: In order to reproduce the example you need the tests datasets folder. You may download it with the command
gammapy download datasets --tests --out $GAMMAPY_DATA
- Attributes
- table
Table
Table with flux point data
- table
Attributes Summary
Available quantities
Predicted counts null hypothesis
Return differential flux (dnde) SED values.
Return differential flux (dnde) SED errors.
Return differential flux (dnde) SED negative errors.
Return differential flux (dnde) SED positive errors.
Reference differential flux
Return differential flux (dnde) SED upper limit.
Return differential energy flux (e2dnde) SED values.
Return differential energy flux (e2dnde) SED errors.
Return differential energy flux (e2dnde) SED negative errors.
Return differential energy flux (e2dnde) SED positive errors.
Reference differential flux * energy ** 2
Return differential energy flux (e2dnde) SED upper limit.
Return energy flux (eflux) SED values.
Return energy flux (eflux) SED errors.
Return energy flux (eflux) SED negative errors.
Return energy flux (eflux) SED positive errors.
Reference energy flux
Return energy flux (eflux) SED upper limits.
Energy axis (
MapAxis
)Energy max
Energy min
Reference energy.
Return integral flux (flux) SED values.
Return integral flux (flux) SED values.
Return integral flux (flux) SED negative errors.
Return integral flux (flux) SED positive errors.
Reference integral flux
Return integral flux (flux) SED upper limits.
Reference map geometry (
Geom
)Whether the flux estimate has either sqrt(ts) or ts defined
Whether the flux estimate has stat profiles
Whether the flux estimate has the fit status
Whether the flux estimate has norm_ul defined
Check whether differential sed type is convertible to integral sed type
Whether data is an upper limit
n sigma
n sigma UL
Number of iterations of fit
Norm values
Norm error
Negative norm error
Positive norm error
Norm upper limit
Predicted counts from best fit hypothesis
Predicted background counts from best fit hypothesis
Predicted excess count rom best fit hypothesis
Predicted excess counts error
Predicted excess counts negative error
Predicted excess counts positive error
Predicted excess reference counts
Predicted excess counts upper limits
Reference model (
SkyModel
)Reference model default (
SkyModel
)Reference spectral model (
SpectralModel
)Initial sed type
Initial sed type
sqrt(TS) as defined by:
sqrt(TS) threshold for upper limits
Fit statistic value
Fit statistic value for the null hypothesis
Fit statistic scan value
Fit success flag
ts map (
Map
)ts scan (
Map
)Methods Summary
all_quantities
(sed_type)All quantities allowed for a given sed type.
from_hdulist
(hdulist[, hdu_bands, sed_type])Create flux map dataset from list of HDUs.
from_maps
(maps[, sed_type, reference_model, ...])Create FluxMaps from a dictionary of maps.
from_stack
(maps, axis[, meta])Create flux points by stacking list of flux points.
from_table
(table[, sed_type, format, ...])Create flux points from a table.
get_flux_points
([position])Extract flux point at a given position.
iter_by_axis
(axis_name[, keepdims])Create a set of FluxMaps by splitting along an axis.
plot
([ax, sed_type, energy_power])Plot flux points.
plot_ts_profiles
([ax, sed_type, add_cbar])Plot fit statistic SED profiles as a density plot.
read
(filename[, sed_type, format, ...])Read precomputed flux points.
recompute_ul
([n_sigma_ul])Recompute upper limits corresponding to the given value.
slice_by_idx
(slices)Slice flux maps by idx
to_hdulist
([sed_type, hdu_bands])Convert flux map to list of HDUs.
to_maps
([sed_type])Return maps in a given SED type.
to_table
([sed_type, format, formatted])Create table for a given SED type.
write
(filename[, sed_type, format])Write flux points.
Attributes Documentation
- available_quantities#
Available quantities
- counts#
Predicted counts null hypothesis
- dnde#
Return differential flux (dnde) SED values.
- dnde_err#
Return differential flux (dnde) SED errors.
- dnde_errn#
Return differential flux (dnde) SED negative errors.
- dnde_errp#
Return differential flux (dnde) SED positive errors.
- dnde_ref#
Reference differential flux
- dnde_ul#
Return differential flux (dnde) SED upper limit.
- e2dnde#
Return differential energy flux (e2dnde) SED values.
- e2dnde_err#
Return differential energy flux (e2dnde) SED errors.
- e2dnde_errn#
Return differential energy flux (e2dnde) SED negative errors.
- e2dnde_errp#
Return differential energy flux (e2dnde) SED positive errors.
- e2dnde_ref#
Reference differential flux * energy ** 2
- e2dnde_ul#
Return differential energy flux (e2dnde) SED upper limit.
- eflux#
Return energy flux (eflux) SED values.
- eflux_err#
Return energy flux (eflux) SED errors.
- eflux_errn#
Return energy flux (eflux) SED negative errors.
- eflux_errp#
Return energy flux (eflux) SED positive errors.
- eflux_ref#
Reference energy flux
- eflux_ul#
Return energy flux (eflux) SED upper limits.
- energy_axis#
Energy axis (
MapAxis
)
- energy_ref#
Reference energy.
Defined by
energy_ref
column inFluxPoints.table
or computed as log center, ifenergy_min
andenergy_max
columns are present inFluxEstimate.data
.- Returns
- energy_ref
Quantity
Reference energy.
- energy_ref
- filter_success_nan#
- flux#
Return integral flux (flux) SED values.
- flux_err#
Return integral flux (flux) SED values.
- flux_errn#
Return integral flux (flux) SED negative errors.
- flux_errp#
Return integral flux (flux) SED positive errors.
- flux_ref#
Reference integral flux
- flux_ul#
Return integral flux (flux) SED upper limits.
- geom#
Reference map geometry (
Geom
)
- has_any_ts#
Whether the flux estimate has either sqrt(ts) or ts defined
- has_stat_profiles#
Whether the flux estimate has stat profiles
- has_success#
Whether the flux estimate has the fit status
- has_ul#
Whether the flux estimate has norm_ul defined
- is_convertible_to_flux_sed_type#
Check whether differential sed type is convertible to integral sed type
- is_ul#
Whether data is an upper limit
- n_sigma#
n sigma
- n_sigma_ul#
n sigma UL
- niter#
Number of iterations of fit
- norm#
Norm values
- norm_err#
Norm error
- norm_errn#
Negative norm error
- norm_errp#
Positive norm error
- norm_ul#
Norm upper limit
- npred#
Predicted counts from best fit hypothesis
- npred_background#
Predicted background counts from best fit hypothesis
- npred_excess#
Predicted excess count rom best fit hypothesis
- npred_excess_err#
Predicted excess counts error
- npred_excess_errn#
Predicted excess counts negative error
- npred_excess_errp#
Predicted excess counts positive error
- npred_excess_ref#
Predicted excess reference counts
- npred_excess_ul#
Predicted excess counts upper limits
- reference_model#
Reference model (
SkyModel
)
- reference_model_default#
Reference model default (
SkyModel
)
- reference_spectral_model#
Reference spectral model (
SpectralModel
)
- sed_type_init#
Initial sed type
- sed_type_plot_default#
Initial sed type
- sqrt_ts#
sqrt(TS) as defined by:
\[\begin{split}\sqrt{TS} = \left \{ \begin{array}{ll} -\sqrt{TS} & : \text{if} \ norm < 0 \\ \sqrt{TS} & : \text{else} \end{array} \right.\end{split}\]- Returns
- sqrt_ts
Map
sqrt(TS) map
- sqrt_ts
- sqrt_ts_threshold_ul#
sqrt(TS) threshold for upper limits
- stat#
Fit statistic value
- stat_null#
Fit statistic value for the null hypothesis
- stat_scan#
Fit statistic scan value
- success#
Fit success flag
- ts#
ts map (
Map
)
- ts_scan#
ts scan (
Map
)
Methods Documentation
- static all_quantities(sed_type)#
All quantities allowed for a given sed type.
- Parameters
- sed_type{“likelihood”, “dnde”, “e2dnde”, “flux”, “eflux”}
Sed type.
- Returns
- listlist of str
All allowed quantities for a given sed type.
- classmethod from_hdulist(hdulist, hdu_bands=None, sed_type=None)#
Create flux map dataset from list of HDUs.
- classmethod from_maps(maps, sed_type=None, reference_model=None, gti=None, meta=None)#
Create FluxMaps from a dictionary of maps.
- Parameters
- maps
Maps
Maps object containing the input maps.
- sed_typestr
SED type of the input maps. Default is
Likelihood
- reference_model
SkyModel
, optional Reference model to use for conversions. Default in None. If None, a model consisting of a point source with a power law spectrum of index 2 is assumed.
- gti
GTI
Maps GTI information. Default is None.
- meta
dict
Meta dict.
- maps
- Returns
- flux_maps
FluxMaps
Flux maps object.
- flux_maps
- classmethod from_stack(maps, axis, meta=None)#
Create flux points by stacking list of flux points.
The first
FluxPoints
object in the list is taken as a reference to infer column names and units for the stacked object.
- classmethod from_table(table, sed_type=None, format='gadf-sed', reference_model=None, gti=None)[source]#
Create flux points from a table. The table column names must be consistent with the sed_type
- Parameters
- table
Table
Table
- sed_type{“dnde”, “flux”, “eflux”, “e2dnde”, “likelihood”}
Sed type
- format{“gadf-sed”, “lightcurve”, “profile”}
Table format.
- reference_model
SpectralModel
Reference spectral model
- gti
GTI
Good time intervals
- metadict
Meta data.
- table
- Returns
- flux_points
FluxPoints
Flux points
- flux_points
- get_flux_points(position=None)#
Extract flux point at a given position.
- Parameters
- position
SkyCoord
Position where the flux points are extracted.
- position
- Returns
- flux_points
FluxPoints
Flux points object
- flux_points
- iter_by_axis(axis_name, keepdims=False)#
Create a set of FluxMaps by splitting along an axis.
- Parameters
- axis_namestr
Name of the axis to split on
- keepdimsbool
Whether to keep the split axis with a single bin
- Returns
- flux_maps
FluxMap
FluxMap iteration
- flux_maps
- plot_ts_profiles(ax=None, sed_type=None, add_cbar=True, **kwargs)[source]#
Plot fit statistic SED profiles as a density plot.
- Parameters
- ax
Axes
Axis object to plot on.
- sed_type{“dnde”, “flux”, “eflux”, “e2dnde”}
Sed type
- add_cbarbool
Whether to add a colorbar to the plot.
- **kwargsdict
Keyword arguments passed to
pcolormesh
- ax
- Returns
- ax
Axes
Axis object
- ax
- classmethod read(filename, sed_type=None, format='gadf-sed', reference_model=None, **kwargs)[source]#
Read precomputed flux points.
- Parameters
- filenamestr
Filename
- sed_type{“dnde”, “flux”, “eflux”, “e2dnde”, “likelihood”}
Sed type
- format{“gadf-sed”, “lightcurve”}
Format string.
- reference_model
SpectralModel
Reference spectral model
- **kwargsdict
Keyword arguments passed to
astropy.table.Table.read
.
- Returns
- flux_points
FluxPoints
Flux points
- flux_points
- recompute_ul(n_sigma_ul=2, **kwargs)[source]#
Recompute upper limits corresponding to the given value. The pre-computed stat profiles must exist for the re-computation.
- Parameters
- n_sigma_ulint
Number of sigma to use for upper limit computation. Default is 2.
- **kwargsdict
Keyword arguments passed to
brentq
.
- Returns
- flux_points
FluxPoints
A new FluxPoints object with modified upper limits
- flux_points
Examples
>>> from gammapy.estimators import FluxPoints >>> filename = '$GAMMAPY_DATA/tests/spectrum/flux_points/binlike.fits' >>> flux_points = FluxPoints.read(filename) >>> flux_points_recomputed = flux_points.recompute_ul(n_sigma_ul=3) >>> print(flux_points.meta["n_sigma_ul"], flux_points.flux_ul.data[0]) 2.0 [[3.95451985e-09]] >>> print(flux_points_recomputed.meta["n_sigma_ul"], flux_points_recomputed.flux_ul.data[0]) 3 [[6.22245374e-09]]
- slice_by_idx(slices)#
Slice flux maps by idx
- to_hdulist(sed_type=None, hdu_bands=None)#
Convert flux map to list of HDUs.
For now, one cannot export the reference model.
- Parameters
- sed_typestr
sed type to convert to. Default is
Likelihood
- hdu_bandsstr
Name of the HDU with the BANDS table. Default is ‘BANDS’ If set to None, each map will have its own hdu_band
- Returns
- hdulist
HDUList
Map dataset list of HDUs.
- hdulist
- to_maps(sed_type=None)#
Return maps in a given SED type.
- Parameters
- sed_type{“likelihood”, “dnde”, “e2dnde”, “flux”, “eflux”}
sed type to convert to. Default is
Likelihood
- Returns
- maps
Maps
Maps object containing the requested maps.
- maps
- to_table(sed_type=None, format='gadf-sed', formatted=False)[source]#
Create table for a given SED type.
- Parameters
- sed_type{“likelihood”, “dnde”, “e2dnde”, “flux”, “eflux”}
Sed type to convert to. Default is
likelihood
- format{“gadf-sed”, “lightcurve”, “binned-time-series”, “profile”}
Format specification. The following formats are supported:
“gadf-sed”: format for sed flux points see SED for details
“lightcurve”: Gammapy internal format to store energy dependent lightcurves. Basically a generalisation of the “gadf” format, but currently there is no detailed documentation available.
“binned-time-series”: table format support by Astropy’s
BinnedTimeSeries
.“profile”: Gammapy internal format to store energy dependent flux profiles. Basically a generalisation of the “gadf” format, but currently there is no detailed documentation available.
- formattedbool
Formatted version with column formats applied. Numerical columns are formatted to .3f and .3e respectively.
- Returns
- table
Table
Flux points table
- table
Examples
This is how to read and plot example flux points:
>>> from gammapy.estimators import FluxPoints >>> fp = FluxPoints.read("$GAMMAPY_DATA/hawc_crab/HAWC19_flux_points.fits") >>> table = fp.to_table(sed_type="flux", format="gadf-sed", formatted=True) >>> print(table[:2]) e_ref e_min e_max flux flux_err flux_ul ts sqrt_ts is_ul TeV TeV TeV 1 / (cm2 s) 1 / (cm2 s) 1 / (cm2 s) ----- ----- ----- ----------- ----------- ----------- -------- ------- ----- 1.334 1.000 1.780 1.423e-11 3.135e-13 nan 2734.000 52.288 False 2.372 1.780 3.160 5.780e-12 1.082e-13 nan 4112.000 64.125 False
- write(filename, sed_type=None, format='gadf-sed', **kwargs)[source]#
Write flux points.
- Parameters
- filenamestr
Filename
- sed_type{“dnde”, “flux”, “eflux”, “e2dnde”, “likelihood”}
Sed type
- format{“gadf-sed”, “lightcurve”, “binned-time-series”, “profile”}
Format specification. The following formats are supported:
- “gadf-sed”: format for sed flux points see SED
for details
- “lightcurve”: Gammapy internal format to store energy dependent
lightcurves. Basically a generalisation of the “gadf” format, but currently there is no detailed documentation available.
- “binned-time-series”: table format support by Astropy’s
- “profile”: Gammapy internal format to store energy dependent
flux profiles. Basically a generalisation of the “gadf” format, but currently there is no detailed documentation available.
- **kwargsdict
Keyword arguments passed to
astropy.table.Table.write
.