SNR#

class gammapy.astro.source.SNR(e_sn='1e51 erg', theta=<Quantity 0.1>, n_ISM=<Quantity 1. 1 / cm3>, m_ejecta=<<class 'astropy.constants.iau2015.IAU2015'> name='Solar mass' value=1.988409870698051e+30 uncertainty=4.468805426856864e+25 unit='kg' reference='IAU 2015 Resolution B 3 + CODATA 2018'>, t_stop=<Quantity 1000000. K>, age=None, morphology='Shell2D', spectral_index=2.1)[source]#

Bases: object

Simple supernova remnant (SNR) evolution model.

The model is based on the Sedov-Taylor solution for strong explosions.

Reference: https://ui.adsabs.harvard.edu/abs/1950RSPSA.201..159T

Parameters
e_snQuantity

SNR energy (erg), equal to the SN energy after neutrino losses

thetaQuantity

Fraction of E_SN that goes into cosmic rays

n_ISMQuantity

ISM density (g cm^-3)

m_ejectaQuantity

Ejecta mass (g)

t_stopQuantity

Post-shock temperature where gamma-ray emission stops

Attributes Summary

sedov_taylor_begin

Characteristic time scale when the Sedov-Taylor phase of the SNR's evolution begins.

sedov_taylor_end

Characteristic time scale when the Sedov-Taylor phase of the SNR's evolution ends.

Methods Summary

luminosity_tev(t[, energy_min])

Gamma-ray luminosity above energy_min at age t.

radius(t)

Outer shell radius at age t.

radius_inner(t[, fraction])

Inner radius at age t of the SNR shell.

Attributes Documentation

sedov_taylor_begin#

Characteristic time scale when the Sedov-Taylor phase of the SNR’s evolution begins.

The beginning of the Sedov-Taylor phase of the SNR is defined by the condition, that the swept up mass of the surrounding medium equals the mass of the ejected mass.

The time scale is given by:

\[t_{begin} \approx 200 \left(\frac{E_{SN}}{10^{51}erg}\right)^{-1/2} \left(\frac{M_{ej}}{M_{\odot}}\right)^{5/6} \left(\frac{\rho_{ISM}}{10^{-24}g/cm^3}\right)^{-1/3} \text{yr}\]
sedov_taylor_end#

Characteristic time scale when the Sedov-Taylor phase of the SNR’s evolution ends.

The end of the Sedov-Taylor phase of the SNR is defined by the condition, that the temperature at the shock drops below T = 10^6 K.

The time scale is given by:

\[t_{end} \approx 43000 \left(\frac{m}{1.66\cdot 10^{-24}g}\right)^{5/6} \left(\frac{E_{SN}}{10^{51}erg}\right)^{1/3} \left(\frac{\rho_{ISM}}{1.66\cdot 10^{-24}g/cm^3}\right)^{-1/3} \text{yr}\]

Methods Documentation

luminosity_tev(t, energy_min='1 TeV')[source]#

Gamma-ray luminosity above energy_min at age t.

The luminosity is assumed constant in a given age interval and zero before and after. The assumed spectral index is 2.1.

The gamma-ray luminosity above 1 TeV is given by:

\[L_{\gamma}(\geq 1TeV) \approx 10^{34} \theta \left(\frac{E_{SN}}{10^{51} erg}\right) \left(\frac{\rho_{ISM}}{1.66\cdot 10^{-24} g/cm^{3}} \right) \text{ s}^{-1}\]

Reference: https://ui.adsabs.harvard.edu/abs/1994A%26A…287..959D (Formula (7)).

Parameters
tQuantity

Time after birth of the SNR

energy_minQuantity

Lower energy limit for the luminosity

radius(t)[source]#

Outer shell radius at age t.

The radius during the free expansion phase is given by:

\[r_{SNR}(t) \approx 0.01 \left(\frac{E_{SN}}{10^{51}erg}\right)^{1/2} \left(\frac{M_{ej}}{M_{\odot}}\right)^{-1/2} t \text{ pc}\]

The radius during the Sedov-Taylor phase evolves like:

\[r_{SNR}(t) \approx \left(\frac{E_{SN}}{\rho_{ISM}}\right)^{1/5}t^{2/5}\]
Parameters
tQuantity

Time after birth of the SNR

radius_inner(t, fraction=0.0914)[source]#

Inner radius at age t of the SNR shell.

Parameters
tQuantity

Time after birth of the SNR