GaussianSpatialModel¶
-
class
gammapy.modeling.models.
GaussianSpatialModel
(**kwargs)[source]¶ Bases:
gammapy.modeling.models.SpatialModel
Two-dimensional Gaussian model.
For more information see Gaussian Spatial Model.
- Parameters
- lon_0, lat_0
Angle
Center position
- sigma
Angle
Length of the major semiaxis of the Gaussian, in angular units.
- e
float
Eccentricity of the Gaussian (\(0< e< 1\)).
- phi
Angle
Rotation angle \(\phi\): of the major semiaxis. Increases counter-clockwise from the North direction.
- frame{“icrs”, “galactic”}
Center position coordinate frame
- lon_0, lat_0
Attributes Summary
A model parameter.
Evaluation radius (
Angle
).A model parameter.
A model parameter.
Parameters (
Parameters
)A model parameter.
Spatial model center position
Get 95% containment position error as (
EllipseSkyRegion
)A model parameter.
Methods Summary
__call__
(self, lon, lat)Call evaluate method
copy
(self)A deep copy.
create
(tag, \*args, \*\*kwargs)Create a model instance.
evaluate
(lon, lat, lon_0, lat_0, sigma, e, phi)Evaluate model.
evaluate_geom
(self, geom)Evaluate model on
Geom
.from_dict
(data)plot
(self[, ax, geom])Plot spatial model.
to_dict
(self)Create dict for YAML serilisation
to_region
(self, \*\*kwargs)Model outline (
EllipseSkyRegion
).Attributes Documentation
-
default_parameters
= <gammapy.modeling.parameter.Parameters object>¶
-
e
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
lat_0
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
lon_0
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
parameters
¶ Parameters (
Parameters
)
-
phi
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
phi_0
¶
-
position
¶ Spatial model center position
-
position_error
¶ Get 95% containment position error as (
EllipseSkyRegion
)
-
sigma
¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value
,quantity
ormin
andmax
properties and consider the fact that there is afactor`
andscale
an implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor
,factor_min
andfactor_max
properties, i.e. the optimiser “sees” the well-scaled problem.
-
tag
= 'GaussianSpatialModel'¶
Methods Documentation
-
__call__
(self, lon, lat)¶ Call evaluate method
-
copy
(self)¶ A deep copy.
-
static
create
(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
classmethod
from_dict
(data)¶
-
plot
(self, ax=None, geom=None, **kwargs)¶ Plot spatial model.
-
to_dict
(self)¶ Create dict for YAML serilisation
-
to_region
(self, **kwargs)[source]¶ Model outline (
EllipseSkyRegion
).