PointSpatialModel

class gammapy.modeling.models.PointSpatialModel(**kwargs)[source]

Bases: gammapy.modeling.models.SpatialModel

Point Source.

For more information see Point Spatial Model.

Parameters
lon_0, lat_0Angle

Center position

frame{“icrs”, “galactic”}

Center position coordinate frame

Attributes Summary

default_parameters

evaluation_radius

Evaluation radius (Angle).

lat_0

A model parameter.

lon_0

A model parameter.

parameters

Parameters (Parameters)

phi_0

position

Spatial model center position

position_error

Get 95% containment position error as (EllipseSkyRegion)

tag

Methods Summary

__call__(self, lon, lat)

Call evaluate method

copy(self)

A deep copy.

create(tag, \*args, \*\*kwargs)

Create a model instance.

evaluate_geom(self, geom)

Evaluate model on Geom.

from_dict(data)

plot(self[, ax, geom])

Plot spatial model.

to_dict(self)

Create dict for YAML serilisation

to_region(self, \*\*kwargs)

Model outline (PointSkyRegion).

Attributes Documentation

default_parameters = <gammapy.modeling.parameter.Parameters object>
evaluation_radius

Evaluation radius (Angle).

Set as zero degrees.

lat_0

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor` and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters
namestr

Name

factorfloat or Quantity

Factor

scalefloat, optional

Scale (sometimes used in fitting)

unitUnit or str, optional

Unit

minfloat, optional

Minimum (sometimes used in fitting)

maxfloat, optional

Maximum (sometimes used in fitting)

frozenbool, optional

Frozen? (used in fitting)

lon_0

A model parameter.

Note that the parameter value has been split into a factor and scale like this:

value = factor x scale

Users should interact with the value, quantity or min and max properties and consider the fact that there is a factor` and scale an implementation detail.

That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the factor, factor_min and factor_max properties, i.e. the optimiser “sees” the well-scaled problem.

Parameters
namestr

Name

factorfloat or Quantity

Factor

scalefloat, optional

Scale (sometimes used in fitting)

unitUnit or str, optional

Unit

minfloat, optional

Minimum (sometimes used in fitting)

maxfloat, optional

Maximum (sometimes used in fitting)

frozenbool, optional

Frozen? (used in fitting)

parameters

Parameters (Parameters)

phi_0
position

Spatial model center position

position_error

Get 95% containment position error as (EllipseSkyRegion)

tag = 'PointSpatialModel'

Methods Documentation

__call__(self, lon, lat)

Call evaluate method

copy(self)

A deep copy.

static create(tag, *args, **kwargs)

Create a model instance.

Examples

>>> from gammapy.modeling import Model
>>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3)
>>> type(spectral_model)
gammapy.modeling.models.spectral.PowerLaw2SpectralModel
evaluate_geom(self, geom)[source]

Evaluate model on Geom.

classmethod from_dict(data)
plot(self, ax=None, geom=None, **kwargs)

Plot spatial model.

Parameters
axAxes, optional

Axis

geomWcsGeom, optional

Geom to use for plotting.

**kwargsdict

Keyword arguments passed to plot()

Returns
axAxes, optional

Axis

to_dict(self)

Create dict for YAML serilisation

to_region(self, **kwargs)[source]

Model outline (PointSkyRegion).