LightCurveEstimator¶
-
class
gammapy.time.
LightCurveEstimator
(datasets, time_intervals=None, source='', norm_min=0.2, norm_max=5, norm_n_values=11, norm_values=None, sigma=1, sigma_ul=2, reoptimize=False)[source]¶ Bases:
object
Compute light curve.
The estimator will fit the source model component to datasets in each of the time intervals provided.
If no time intervals are provided, the estimator will use the time intervals defined by the datasets GTIs.
To be included in the estimation, the dataset must have their GTI fully overlapping a time interval.
- Parameters
- datasetslist of
SpectrumDataset
orMapDataset
Spectrum or Map datasets.
- time_intervalslist of
astropy.time.Time
Start and stop time for each interval to compute the LC
- sourcestr
For which source in the model to compute the flux points. Default is ‘’
- norm_minfloat
Minimum value for the norm used for the fit statistic profile evaluation.
- norm_maxfloat
Maximum value for the norm used for the fit statistic profile evaluation.
- norm_n_valuesint
Number of norm values used for the fit statistic profile.
- norm_values
numpy.ndarray
Array of norm values to be used for the fit statistic profile.
- sigmaint
Sigma to use for asymmetric error computation.
- sigma_ulint
Sigma to use for upper limit computation.
- reoptimizebool
reoptimize other parameters during fit statistic scan?
- datasetslist of
Attributes Summary
Methods Summary
estimate_counts
(self, datasets)Estimate counts for the flux point.
estimate_norm
(self)Fit norm of the flux point.
estimate_norm_err
(self)Estimate covariance errors for a flux point.
estimate_norm_errn_errp
(self)Estimate asymmetric errors for a flux point.
estimate_norm_scan
(self)Estimate fit statistic profile for the norm parameter.
estimate_norm_ts
(self, datasets)Estimate ts and sqrt(ts) for the flux point.
estimate_norm_ul
(self, datasets)Estimate upper limit for a flux point.
estimate_time_bin_flux
(self, datasets, …)Estimate flux point for a single energy group.
run
(self, e_ref, e_min, e_max[, steps, atol])Run light curve extraction.
Attributes Documentation
-
ref_model
¶
Methods Documentation
-
estimate_counts
(self, datasets)[source]¶ Estimate counts for the flux point.
- Parameters
- datasets
Datasets
the list of dataset object
- datasets
- Returns
- resultdict
Dict with an array with one entry per dataset with counts for the flux point.
-
estimate_norm
(self)[source]¶ Fit norm of the flux point.
- Returns
- resultdict
Dict with “norm” and “stat” for the flux point.
-
estimate_norm_err
(self)[source]¶ Estimate covariance errors for a flux point.
- Returns
- resultdict
Dict with symmetric error for the flux point norm.
-
estimate_norm_errn_errp
(self)[source]¶ Estimate asymmetric errors for a flux point.
- Returns
- resultdict
Dict with asymmetric errors for the flux point norm.
-
estimate_norm_scan
(self)[source]¶ Estimate fit statistic profile for the norm parameter.
- Returns
- resultdict
Keys “norm_scan”, “stat_scan”
-
estimate_norm_ts
(self, datasets)[source]¶ Estimate ts and sqrt(ts) for the flux point.
- Parameters
- datasets
Datasets
the list of dataset object
- datasets
- Returns
- resultdict
Dict with ts and sqrt(ts) for the flux point.
-
estimate_norm_ul
(self, datasets)[source]¶ Estimate upper limit for a flux point.
- Parameters
- datasets
Datasets
the list of dataset object
- datasets
- Returns
- resultdict
Dict with upper limit for the flux point norm.
-
estimate_time_bin_flux
(self, datasets, time_interval, steps='all')[source]¶ Estimate flux point for a single energy group.
- Parameters
- datasets
Datasets
the list of dataset object
- time_intervalastropy.time.Time`
Start and stop time for each interval
- stepslist of str
Which steps to execute. Available options are:
“err”: estimate symmetric error.
“errn-errp”: estimate asymmetric errors.
“ul”: estimate upper limits.
“ts”: estimate ts and sqrt(ts) values.
“norm-scan”: estimate likelihood profiles.
By default all steps are executed.
- datasets
- Returns
- resultdict
Dict with results for the flux point.
-
run
(self, e_ref, e_min, e_max, steps='all', atol='1e-6 s')[source]¶ Run light curve extraction.
Normalize integral and energy flux between emin and emax.
- Parameters
- e_ref
Quantity
reference energy of dnde flux normalization
- e_min
Quantity
minimum energy of integral and energy flux normalization interval
- e_max
Quantity
minimum energy of integral and energy flux normalization interval
- stepslist of str
Which steps to execute. Available options are:
“err”: estimate symmetric error.
“errn-errp”: estimate asymmetric errors.
“ul”: estimate upper limits.
“ts”: estimate ts and sqrt(ts) values.
“norm-scan”: estimate fit statistic profiles.
By default all steps are executed.
- atol
Quantity
Tolerance value for time comparison with different scale. Default 1e-6 sec.
- e_ref
- Returns
- lightcurve
LightCurve
the Light Curve object
- lightcurve