# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging
import numpy as np
from astropy.convolution import Gaussian2DKernel
from astropy.coordinates import Angle
from astropy.io import fits
from astropy.stats import gaussian_fwhm_to_sigma
from astropy.table import Table
from astropy.units import Quantity, Unit
from gammapy.maps import MapAxis
from gammapy.utils.array import array_stats_str
from gammapy.utils.gauss import MultiGauss2D
from gammapy.utils.interpolation import ScaledRegularGridInterpolator
from gammapy.utils.scripts import make_path
from .psf_3d import PSF3D
from .psf_table import EnergyDependentTablePSF
__all__ = ["EnergyDependentMultiGaussPSF"]
log = logging.getLogger(__name__)
[docs]class EnergyDependentMultiGaussPSF:
"""
Triple Gauss analytical PSF depending on energy and theta.
To evaluate the PSF call the ``to_energy_dependent_table_psf`` or ``psf_at_energy_and_theta`` methods.
Parameters
----------
energy_lo : `~astropy.units.Quantity`
Lower energy boundary of the energy bin.
energy_hi : `~astropy.units.Quantity`
Upper energy boundary of the energy bin.
theta : `~astropy.units.Quantity`
Center values of the theta bins.
sigmas : list of 'numpy.ndarray'
Triple Gauss sigma parameters, where every entry is
a two dimensional 'numpy.ndarray' containing the sigma
value for every given energy and theta.
norms : list of 'numpy.ndarray'
Triple Gauss norm parameters, where every entry is
a two dimensional 'numpy.ndarray' containing the norm
value for every given energy and theta. Norm corresponds
to the value of the Gaussian at theta = 0.
energy_thresh_lo : `~astropy.units.Quantity`
Lower save energy threshold of the psf.
energy_thresh_hi : `~astropy.units.Quantity`
Upper save energy threshold of the psf.
Examples
--------
Plot R68 of the PSF vs. theta and energy:
.. plot::
:include-source:
import matplotlib.pyplot as plt
from gammapy.irf import EnergyDependentMultiGaussPSF
filename = '$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits'
psf = EnergyDependentMultiGaussPSF.read(filename, hdu='POINT SPREAD FUNCTION')
psf.plot_containment(0.68, show_safe_energy=False)
plt.show()
"""
def __init__(
self,
energy_lo,
energy_hi,
theta,
sigmas,
norms,
energy_thresh_lo="0.1 TeV",
energy_thresh_hi="100 TeV",
):
self.energy_lo = Quantity(energy_lo, "TeV")
self.energy_hi = Quantity(energy_hi, "TeV")
self.energy = np.sqrt(self.energy_hi * self.energy_lo)
self.theta = Quantity(theta, "deg")
sigmas[0][sigmas[0] == 0] = 1
sigmas[1][sigmas[1] == 0] = 1
sigmas[2][sigmas[2] == 0] = 1
self.sigmas = sigmas
self.norms = norms
self.energy_thresh_lo = Quantity(energy_thresh_lo, "TeV")
self.energy_thresh_hi = Quantity(energy_thresh_hi, "TeV")
self._interp_norms = self._setup_interpolators(self.norms)
self._interp_sigmas = self._setup_interpolators(self.sigmas)
def _setup_interpolators(self, values_list):
interps = []
for values in values_list:
interp = ScaledRegularGridInterpolator(
points=(self.theta, self.energy), values=values
)
interps.append(interp)
return interps
[docs] @classmethod
def read(cls, filename, hdu="PSF_2D_GAUSS"):
"""Create `EnergyDependentMultiGaussPSF` from FITS file.
Parameters
----------
filename : str
File name
"""
with fits.open(make_path(filename), memmap=False) as hdulist:
return cls.from_fits(hdulist[hdu])
[docs] @classmethod
def from_fits(cls, hdu):
"""Create `EnergyDependentMultiGaussPSF` from HDU list.
Parameters
----------
hdu : `~astropy.io.fits.BinTableHDU`
HDU
"""
energy_lo = Quantity(hdu.data["ENERG_LO"][0], "TeV")
energy_hi = Quantity(hdu.data["ENERG_HI"][0], "TeV")
theta = Angle(hdu.data["THETA_LO"][0], "deg")
# Get sigmas
shape = (len(theta), len(energy_hi))
sigmas = []
for key in ["SIGMA_1", "SIGMA_2", "SIGMA_3"]:
sigma = hdu.data[key].reshape(shape).copy()
sigmas.append(sigma)
# Get amplitudes
norms = []
for key in ["SCALE", "AMPL_2", "AMPL_3"]:
norm = hdu.data[key].reshape(shape).copy()
norms.append(norm)
opts = {}
try:
opts["energy_thresh_lo"] = Quantity(hdu.header["LO_THRES"], "TeV")
opts["energy_thresh_hi"] = Quantity(hdu.header["HI_THRES"], "TeV")
except KeyError:
pass
return cls(energy_lo, energy_hi, theta, sigmas, norms, **opts)
[docs] def to_fits(self):
"""
Convert psf table data to FITS hdu list.
Returns
-------
hdu_list : `~astropy.io.fits.HDUList`
PSF in HDU list format.
"""
# Set up data
names = [
"ENERG_LO",
"ENERG_HI",
"THETA_LO",
"THETA_HI",
"SCALE",
"SIGMA_1",
"AMPL_2",
"SIGMA_2",
"AMPL_3",
"SIGMA_3",
]
units = ["TeV", "TeV", "deg", "deg", "", "deg", "", "deg", "", "deg"]
data = [
self.energy_lo,
self.energy_hi,
self.theta,
self.theta,
self.norms[0],
self.sigmas[0],
self.norms[1],
self.sigmas[1],
self.norms[2],
self.sigmas[2],
]
table = Table()
for name_, data_, unit_ in zip(names, data, units):
table[name_] = [data_]
table[name_].unit = unit_
# Create hdu and hdu list
hdu = fits.BinTableHDU(table)
hdu.header["LO_THRES"] = self.energy_thresh_lo.value
hdu.header["HI_THRES"] = self.energy_thresh_hi.value
return fits.HDUList([fits.PrimaryHDU(), hdu])
[docs] def write(self, filename, *args, **kwargs):
"""Write PSF to FITS file.
Calls `~astropy.io.fits.HDUList.writeto`, forwarding all arguments.
"""
self.to_fits().writeto(filename, *args, **kwargs)
[docs] def psf_at_energy_and_theta(self, energy, theta):
"""
Get `~gammapy.modeling.models.MultiGauss2D` model for given energy and theta.
No interpolation is used.
Parameters
----------
energy : `~astropy.units.Quantity`
Energy at which a PSF is requested.
theta : `~astropy.coordinates.Angle`
Offset angle at which a PSF is requested.
Returns
-------
psf : `~gammapy.morphology.MultiGauss2D`
Multigauss PSF object.
"""
energy = Quantity(energy)
theta = Quantity(theta)
pars = {}
for name, interp_norm in zip(["scale", "A_2", "A_3"], self._interp_norms):
pars[name] = interp_norm((theta, energy))
for idx, interp_sigma in enumerate(self._interp_sigmas):
pars[f"sigma_{idx + 1}"] = interp_sigma((theta, energy))
psf = HESSMultiGaussPSF(pars)
return psf.to_MultiGauss2D(normalize=True)
[docs] def containment_radius(self, energy, theta, fraction=0.68):
"""Compute containment for all energy and theta values"""
# This is a false positive from pylint
# See https://github.com/PyCQA/pylint/issues/2435
energies = Quantity(
energy
).flatten() # pylint:disable=assignment-from-no-return
thetas = Angle(theta).flatten()
radius = np.empty((theta.size, energy.size))
for idx, energy in enumerate(energies):
for jdx, theta in enumerate(thetas):
try:
psf = self.psf_at_energy_and_theta(energy, theta)
radius[jdx, idx] = psf.containment_radius(fraction)
except ValueError:
log.debug(
f"Computing containment failed for energy = {energy:.2f}"
f" and theta={theta:.2f}"
)
log.debug(f"Sigmas: {psf.sigmas} Norms: {psf.norms}")
radius[jdx, idx] = np.nan
return Angle(radius, "deg")
[docs] def plot_containment(
self, fraction=0.68, ax=None, show_safe_energy=False, add_cbar=True, **kwargs
):
"""
Plot containment image with energy and theta axes.
Parameters
----------
fraction : float
Containment fraction between 0 and 1.
add_cbar : bool
Add a colorbar
"""
import matplotlib.pyplot as plt
ax = plt.gca() if ax is None else ax
energy = self.energy_hi
offset = self.theta
# Set up and compute data
containment = self.containment_radius(energy, offset, fraction)
# plotting defaults
kwargs.setdefault("cmap", "GnBu")
kwargs.setdefault("vmin", np.nanmin(containment.value))
kwargs.setdefault("vmax", np.nanmax(containment.value))
# Plotting
x = energy.value
y = offset.value
caxes = ax.pcolormesh(x, y, containment.value, **kwargs)
# Axes labels and ticks, colobar
ax.semilogx()
ax.set_ylabel(f"Offset ({offset.unit})")
ax.set_xlabel(f"Energy ({energy.unit})")
ax.set_xlim(x.min(), x.max())
ax.set_ylim(y.min(), y.max())
if show_safe_energy:
self._plot_safe_energy_range(ax)
if add_cbar:
label = f"Containment radius R{100 * fraction:.0f} ({containment.unit})"
ax.figure.colorbar(caxes, ax=ax, label=label)
return ax
def _plot_safe_energy_range(self, ax):
"""add safe energy range lines to the plot"""
esafe = self.energy_thresh_lo
omin = self.offset.value.min()
omax = self.offset.value.max()
ax.hlines(y=esafe.value, xmin=omin, xmax=omax)
label = f"Safe energy threshold: {esafe:3.2f}"
ax.text(x=0.1, y=0.9 * esafe.value, s=label, va="top")
[docs] def plot_containment_vs_energy(
self, fractions=[0.68, 0.95], thetas=Angle([0, 1], "deg"), ax=None, **kwargs
):
"""Plot containment fraction as a function of energy.
"""
import matplotlib.pyplot as plt
ax = plt.gca() if ax is None else ax
energy = MapAxis.from_energy_bounds(
self.energy_lo[0], self.energy_hi[-1], 100
).edges
for theta in thetas:
for fraction in fractions:
radius = self.containment_radius(energy, theta, fraction).squeeze()
label = f"{theta.deg} deg, {100 * fraction:.1f}%"
ax.plot(energy.value, radius.value, label=label)
ax.semilogx()
ax.legend(loc="best")
ax.set_xlabel("Energy (TeV)")
ax.set_ylabel("Containment radius (deg)")
[docs] def peek(self, figsize=(15, 5)):
"""Quick-look summary plots."""
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=figsize)
self.plot_containment(fraction=0.68, ax=axes[0])
self.plot_containment(fraction=0.95, ax=axes[1])
self.plot_containment_vs_energy(ax=axes[2])
# TODO: implement this plot
# psf = self.psf_at_energy_and_theta(energy='1 TeV', theta='1 deg')
# psf.plot_components(ax=axes[2])
plt.tight_layout()
[docs] def info(
self,
fractions=[0.68, 0.95],
energies=Quantity([1.0, 10.0], "TeV"),
thetas=Quantity([0.0], "deg"),
):
"""
Print PSF summary info.
The containment radius for given fraction, energies and thetas is
computed and printed on the command line.
Parameters
----------
fractions : list
Containment fraction to compute containment radius for.
energies : `~astropy.units.Quantity`
Energies to compute containment radius for.
thetas : `~astropy.units.Quantity`
Thetas to compute containment radius for.
Returns
-------
ss : string
Formatted string containing the summary info.
"""
ss = "\nSummary PSF info\n"
ss += "----------------\n"
ss += array_stats_str(self.theta.to("deg"), "Theta")
ss += array_stats_str(self.energy_hi, "Energy hi")
ss += array_stats_str(self.energy_lo, "Energy lo")
ss += f"Safe energy threshold lo: {self.energy_thresh_lo:6.3f}\n"
ss += f"Safe energy threshold hi: {self.energy_thresh_hi:6.3f}\n"
for fraction in fractions:
containment = self.containment_radius(energies, thetas, fraction)
for i, energy in enumerate(energies):
for j, theta in enumerate(thetas):
radius = containment[j, i]
ss += (
"{:2.0f}% containment radius at theta = {} and "
"E = {:4.1f}: {:5.8f}\n"
"".format(100 * fraction, theta, energy, radius)
)
return ss
[docs] def to_energy_dependent_table_psf(self, theta=None, rad=None, exposure=None):
"""
Convert triple Gaussian PSF ot table PSF.
Parameters
----------
theta : `~astropy.coordinates.Angle`
Offset in the field of view. Default theta = 0 deg
rad : `~astropy.coordinates.Angle`
Offset from PSF center used for evaluating the PSF on a grid.
Default offset = [0, 0.005, ..., 1.495, 1.5] deg.
exposure : `~astropy.units.Quantity`
Energy dependent exposure. Should be in units equivalent to 'cm^2 s'.
Default exposure = 1.
Returns
-------
tabe_psf : `~gammapy.irf.EnergyDependentTablePSF`
Instance of `EnergyDependentTablePSF`.
"""
# Convert energies to log center
energies = self.energy
# Defaults and input handling
if theta is None:
theta = Angle(0, "deg")
else:
theta = Angle(theta)
if rad is None:
rad = Angle(np.arange(0, 1.5, 0.005), "deg")
else:
rad = Angle(rad).to("deg")
psf_value = Quantity(np.zeros((energies.size, rad.size)), "deg^-2")
for idx, energy in enumerate(energies):
psf_gauss = self.psf_at_energy_and_theta(energy, theta)
psf_value[idx] = Quantity(psf_gauss(rad), "deg^-2")
return EnergyDependentTablePSF(
energy=energies, rad=rad, exposure=exposure, psf_value=psf_value
)
[docs] def to_psf3d(self, rad=None):
"""Create a PSF3D from an analytical PSF.
Parameters
----------
rad : `~astropy.units.Quantity` or `~astropy.coordinates.Angle`
the array of position errors (rad) on which the PSF3D will be defined
Returns
-------
psf3d : `~gammapy.irf.PSF3D`
the PSF3D. It will be defined on the same energy and offset values than the input psf.
"""
offsets = self.theta
energy = self.energy
energy_lo = self.energy_lo
energy_hi = self.energy_hi
if rad is None:
rad = np.linspace(0, 0.66, 67) * Unit(
"deg"
) # Arbitrary binning of 0.01 in rad
rad_lo = rad[:-1]
rad_hi = rad[1:]
psf_values = np.zeros(
(rad_lo.shape[0], offsets.shape[0], energy_lo.shape[0])
) * Unit("sr-1")
for i, offset in enumerate(offsets):
psftable = self.to_energy_dependent_table_psf(offset)
psf_values[:, i, :] = psftable.evaluate(energy, 0.5 * (rad_lo + rad_hi)).T
return PSF3D(
energy_lo,
energy_hi,
offsets,
rad_lo,
rad_hi,
psf_values,
self.energy_thresh_lo,
self.energy_thresh_hi,
)
class HESSMultiGaussPSF:
"""Multi-Gauss PSF as represented in the HESS software.
The 2D Gaussian is represented as a 1D exponential
probability density function per offset angle squared:
dp / dtheta**2 = [0]*(exp(-x/(2*[1]*[1]))+[2]*exp(-x/(2*[3]*[3]))
@param source: either a dict of a filename
The following two parameters control numerical
precision / speed. Usually the defaults are fine.
@param theta_max: Maximum offset in numerical computations
@param npoints: Number of points in numerical computations
@param eps: Allowed tolerance on normalization of total P to 1
"""
def __init__(self, source):
if isinstance(source, dict):
# Assume source is a dict with correct format
self.pars = source
else:
# Assume source is a filename with correct format
self.pars = self._read_ascii(source)
# Scale will be computed from normalization anyways,
# so any default is fine here
self.pars["scale"] = self.pars.get("scale", 1)
# This avoids handling the first PSF as a special case
self.pars["A_1"] = self.pars.get("A_1", 1)
def _read_ascii(self, filename):
"""Parse file with parameters."""
fh = open(filename) # .readlines()
pars = {}
for line in fh:
try:
key, value = line.strip().split()[:2]
if key.startswith("#"):
continue
else:
pars[key] = float(value)
except ValueError:
pass
fh.close()
return pars
def n_gauss(self):
"""Count number of Gaussians."""
return len([_ for _ in self.pars.keys() if "sigma" in _])
def dpdtheta2(self, theta2):
"""dp / dtheta2 at position theta2 = theta ^ 2."""
theta2 = np.asarray(theta2, "f")
total = np.zeros_like(theta2)
for ii in range(1, self.n_gauss() + 1):
A = self.pars[f"A_{ii}"]
sigma = self.pars[f"sigma_{ii}"]
total += A * np.exp(-theta2 / (2 * sigma ** 2))
return self.pars["scale"] * total
def to_MultiGauss2D(self, normalize=True):
"""Use this to compute containment angles and fractions.
Note: We have to set norm = 2 * A * sigma ^ 2, because in
MultiGauss2D norm represents the integral, and in HESS A
represents the amplitude at 0.
"""
sigmas, norms = [], []
for ii in range(1, self.n_gauss() + 1):
A = self.pars[f"A_{ii}"]
sigma = self.pars[f"sigma_{ii}"]
norm = self.pars["scale"] * 2 * A * sigma ** 2
sigmas.append(sigma)
norms.append(norm)
m = MultiGauss2D(sigmas, norms)
if normalize:
m.normalize()
return m
def multi_gauss_psf_kernel(psf_parameters, BINSZ=0.02, NEW_BINSZ=0.02, **kwargs):
"""Create multi-Gauss PSF kernel.
The Gaussian PSF components are specified via the
amplitude at the center and the FWHM.
See the example for the exact format.
Parameters
----------
psf_parameters : dict
PSF parameters
BINSZ : float (0.02)
Pixel size used for the given parameters in deg.
NEW_BINSZ : float (0.02)
New pixel size in deg. USed to change the resolution of the PSF.
Returns
-------
psf_kernel : `astropy.convolution.Kernel2D`
PSF kernel
Examples
--------
>>> psf_pars = dict()
>>> psf_pars['psf1'] = dict(ampl=1, fwhm=2.5)
>>> psf_pars['psf2'] = dict(ampl=0.06, fwhm=11.14)
>>> psf_pars['psf3'] = dict(ampl=0.47, fwhm=5.16)
>>> psf_kernel = multi_gauss_psf_kernel(psf_pars, x_size=51)
"""
psf = None
for ii in range(1, 4):
# Convert sigma and amplitude
pars = psf_parameters[f"psf{ii}"]
sigma = gaussian_fwhm_to_sigma * pars["fwhm"] * BINSZ / NEW_BINSZ
ampl = 2 * np.pi * sigma ** 2 * pars["ampl"]
if psf is None:
psf = float(ampl) * Gaussian2DKernel(sigma, **kwargs)
else:
psf += float(ampl) * Gaussian2DKernel(sigma, **kwargs)
psf.normalize()
return psf