Source code for gammapy.maps.geom

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import abc
import copy
import inspect
import logging
import numpy as np
import scipy.interpolate
from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.io import fits
from astropy.table import Column, QTable, Table
from astropy.utils import lazyproperty
from gammapy.utils.interpolation import interpolation_scale
from .utils import INVALID_INDEX, edges_from_lo_hi, find_bands_hdu, find_hdu

__all__ = ["MapCoord", "Geom", "MapAxis"]

log = logging.getLogger(__name__)


def make_axes(axes_in):
    """Make a sequence of `~MapAxis` objects."""
    if axes_in is None:
        return []

    axes_out = []
    for idx, ax in enumerate(axes_in):
        if isinstance(ax, np.ndarray):
            ax = MapAxis(ax)

        if ax.name == "":
            ax.name = "axis{}".format(idx)

        axes_out += [ax]

    return axes_out


def make_axes_cols(axes, axis_names=None):
    """Make FITS table columns for map axes.

    Parameters
    ----------
    axes : list
        Python list of `MapAxis` objects

    Returns
    -------
    cols : list
        Python list of `~astropy.io.fits.Column`
    """
    size = np.prod([ax.nbin for ax in axes])
    chan = np.arange(0, size)
    cols = [fits.Column("CHANNEL", "I", array=chan)]

    if axis_names is None:
        axis_names = [ax.name for ax in axes]
    axis_names = [_.upper() for _ in axis_names]

    axes_ctr = np.meshgrid(*[ax.center for ax in axes])
    axes_min = np.meshgrid(*[ax.edges[:-1] for ax in axes])
    axes_max = np.meshgrid(*[ax.edges[1:] for ax in axes])

    for i, (ax, name) in enumerate(zip(axes, axis_names)):

        if name == "ENERGY":
            colnames = ["ENERGY", "E_MIN", "E_MAX"]
        else:
            s = "AXIS%i" % i if name == "" else name
            colnames = [s, s + "_MIN", s + "_MAX"]

        for colname, v in zip(colnames, [axes_ctr, axes_min, axes_max]):
            array = np.ravel(v[i])
            unit = ax.unit.to_string("fits")
            cols.append(fits.Column(colname, "E", array=array, unit=unit))

    return cols


def energy_axis_from_fgst_ccube(hdu):
    bands = Table.read(hdu)
    edges_min = bands["E_MIN"].quantity
    edges_max = bands["E_MAX"].quantity
    edges = edges_from_lo_hi(edges_min, edges_max)
    return [MapAxis.from_edges(edges=edges, name="energy", interp="log")]


def energy_axis_from_fgst_template(hdu):
    bands = Table.read(hdu)

    allowed_names = ["Energy", "ENERGY", "energy"]
    for colname in bands.colnames:
        if colname in allowed_names:
            tag = colname
            break

    nodes = bands[tag].data

    return [
        MapAxis.from_nodes(nodes=nodes, name="energy_true", unit="MeV", interp="log")
    ]


def axes_from_bands_hdu(hdu):
    """Read and returns the map axes from a BANDS table.

    Parameters
    ----------
    hdu : `~astropy.io.fits.BinTableHDU`
        The BANDS table HDU.

    Returns
    -------
    axes : list of `~MapAxis`
        List of axis objects.
    """
    axes = []

    bands = Table.read(hdu)

    for idx in range(5):
        axcols = bands.meta.get("AXCOLS{}".format(idx + 1))

        if axcols is None:
            break

        colnames = axcols.split(",")
        node_type = "edges" if len(colnames) == 2 else "center"

        # TODO: check why this extra case is needed
        if colnames[0] == "E_MIN":
            name = "energy"
        else:
            name = colnames[0].replace("_MIN", "").lower()

        interp = bands.meta.get("INTERP{}".format(idx + 1), "lin")

        if node_type == "center":
            nodes = np.unique(bands[colnames[0]].quantity)
        else:
            edges_min = np.unique(bands[colnames[0]].quantity)
            edges_max = np.unique(bands[colnames[1]].quantity)
            nodes = edges_from_lo_hi(edges_min, edges_max)

        axis = MapAxis(nodes=nodes, node_type=node_type, interp=interp, name=name)
        axes.append(axis)

    return axes


def find_and_read_bands(hdu):
    if hdu is None:
        return []

    if hdu.name == "ENERGIES":
        axes = energy_axis_from_fgst_template(hdu)
    elif hdu.name == "EBOUNDS":
        axes = energy_axis_from_fgst_ccube(hdu)
    else:
        axes = axes_from_bands_hdu(hdu)

    return axes


def get_shape(param):
    if param is None:
        return tuple()

    if not isinstance(param, tuple):
        param = [param]

    return max([np.array(p, ndmin=1).shape for p in param])


def skycoord_to_lonlat(skycoord, frame=None):
    """Convert SkyCoord to lon, lat, frame.

    Returns
    -------
    lon : `~numpy.ndarray`
        Longitude in degrees.
    lat : `~numpy.ndarray`
        Latitude in degrees.
    """
    if frame:
        skycoord = skycoord.transform_to(frame)

    return skycoord.data.lon.deg, skycoord.data.lat.deg, skycoord.frame.name


def pix_tuple_to_idx(pix):
    """Convert a tuple of pixel coordinate arrays to a tuple of pixel indices.

    Pixel coordinates are rounded to the closest integer value.

    Parameters
    ----------
    pix : tuple
        Tuple of pixel coordinates with one element for each dimension

    Returns
    -------
    idx : `~numpy.ndarray`
        Array of pixel indices
    """
    idx = []
    for p in pix:
        p = np.array(p, ndmin=1)
        if np.issubdtype(p.dtype, np.integer):
            idx += [p]
        else:
            p_idx = np.rint(p).astype(int)
            p_idx[~np.isfinite(p)] = INVALID_INDEX.int
            idx += [p_idx]

    return tuple(idx)


def coord_to_idx(edges, x, clip=False):
    """Convert axis coordinates ``x`` to bin indices.

    Returns -1 for values below/above the lower/upper edge.
    """
    x = np.array(x, ndmin=1)
    ibin = np.digitize(x, edges) - 1

    if clip:
        ibin[x < edges[0]] = 0
        ibin[x > edges[-1]] = len(edges) - 1
    else:
        with np.errstate(invalid="ignore"):
            ibin[x > edges[-1]] = INVALID_INDEX.int

    ibin[~np.isfinite(x)] = INVALID_INDEX.int
    return ibin


def coord_to_pix(edges, coord, interp="lin"):
    """Convert axis to pixel coordinates for given interpolation scheme."""
    scale = interpolation_scale(interp)

    interp_fn = scipy.interpolate.interp1d(
        scale(edges), np.arange(len(edges), dtype=float), fill_value="extrapolate"
    )

    return interp_fn(scale(coord))


def pix_to_coord(edges, pix, interp="lin"):
    """Convert pixel to grid coordinates for given interpolation scheme."""
    scale = interpolation_scale(interp)

    interp_fn = scipy.interpolate.interp1d(
        np.arange(len(edges), dtype=float), scale(edges), fill_value="extrapolate"
    )

    return scale.inverse(interp_fn(pix))


[docs]class MapAxis: """Class representing an axis of a map. Provides methods for transforming to/from axis and pixel coordinates. An axis is defined by a sequence of node values that lie at the center of each bin. The pixel coordinate at each node is equal to its index in the node array (0, 1, ..). Bin edges are offset by 0.5 in pixel coordinates from the nodes such that the lower/upper edge of the first bin is (-0.5,0.5). Parameters ---------- nodes : `~numpy.ndarray` or `~astropy.units.Quantity` Array of node values. These will be interpreted as either bin edges or centers according to ``node_type``. interp : str Interpolation method used to transform between axis and pixel coordinates. Valid options are 'log', 'lin', and 'sqrt'. name : str Axis name node_type : str Flag indicating whether coordinate nodes correspond to pixel edges (node_type = 'edge') or pixel centers (node_type = 'center'). 'center' should be used where the map values are defined at a specific coordinate (e.g. differential quantities). 'edge' should be used where map values are defined by an integral over coordinate intervals (e.g. a counts histogram). unit : str String specifying the data units. """ # TODO: Add methods to faciliate FITS I/O. # TODO: Cache an interpolation object? def __init__(self, nodes, interp="lin", name="", node_type="edges", unit=""): self.name = name if len(nodes) != len(np.unique(nodes)): raise ValueError("MapAxis: node values must be unique") if ~(np.all(nodes == np.sort(nodes)) or np.all(nodes[::-1] == np.sort(nodes))): raise ValueError("MapAxis: node values must be sorted") if len(nodes) == 1 and node_type == "center": raise ValueError("Single bins can only be used with node-type 'edges'") if isinstance(nodes, u.Quantity): unit = nodes.unit if nodes.unit is not None else "" nodes = nodes.value else: nodes = np.array(nodes) self._unit = u.Unit(unit) self._nodes = nodes self._node_type = node_type self._interp = interp if (self._nodes < 0).any() and interp != "lin": raise ValueError( f"Interpolation scaling {interp!r} only support for positive node values." ) # Set pixel coordinate of first node if node_type == "edges": self._pix_offset = -0.5 nbin = len(nodes) - 1 elif node_type == "center": self._pix_offset = 0.0 nbin = len(nodes) else: raise ValueError(f"Invalid node type: {node_type!r}") self._nbin = nbin def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented # TODO: implement an allclose method for MapAxis and call it here if self.edges.shape != other.edges.shape: return False if self.unit.is_equivalent(other.unit) is False: return False return ( np.allclose( self.edges.to(other.unit).value, other.edges.value, atol=1e-6, rtol=1e-6 ) and self._node_type == other._node_type and self._interp == other._interp and self.name.upper() == other.name.upper() ) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return id(self) @property def interp(self): """Interpolation scale of the axis.""" return self._interp @property def name(self): """Name of the axis.""" return self._name @name.setter def name(self, val): self._name = val @lazyproperty def edges(self): """Return array of bin edges.""" pix = np.arange(self.nbin + 1, dtype=float) - 0.5 return u.Quantity(self.pix_to_coord(pix), self._unit, copy=False) @lazyproperty def center(self): """Return array of bin centers.""" pix = np.arange(self.nbin, dtype=float) return u.Quantity(self.pix_to_coord(pix), self._unit, copy=False) @lazyproperty def bin_width(self): """Array of bin widths.""" return np.diff(self.edges) @property def nbin(self): """Return number of bins.""" return self._nbin @property def node_type(self): """Return node type ('center' or 'edge').""" return self._node_type @property def unit(self): """Return coordinate axis unit.""" return self._unit
[docs] @classmethod def from_bounds(cls, lo_bnd, hi_bnd, nbin, **kwargs): """Generate an axis object from a lower/upper bound and number of bins. If node_type = 'edge' then bounds correspond to the lower and upper bound of the first and last bin. If node_type = 'center' then bounds correspond to the centers of the first and last bin. Parameters ---------- lo_bnd : float Lower bound of first axis bin. hi_bnd : float Upper bound of last axis bin. nbin : int Number of bins. interp : {'lin', 'log', 'sqrt'} Interpolation method used to transform between axis and pixel coordinates. Default: 'lin'. """ nbin = int(nbin) interp = kwargs.setdefault("interp", "lin") node_type = kwargs.setdefault("node_type", "edges") if node_type == "edges": nnode = nbin + 1 elif node_type == "center": nnode = nbin else: raise ValueError(f"Invalid node type: {node_type!r}") if interp == "lin": nodes = np.linspace(lo_bnd, hi_bnd, nnode) elif interp == "log": nodes = np.exp(np.linspace(np.log(lo_bnd), np.log(hi_bnd), nnode)) elif interp == "sqrt": nodes = np.linspace(lo_bnd ** 0.5, hi_bnd ** 0.5, nnode) ** 2.0 else: raise ValueError(f"Invalid interp: {interp}") return cls(nodes, **kwargs)
[docs] @classmethod def from_energy_bounds( cls, emin, emax, nbin, unit=None, per_decade=False, name=None ): """Make an energy axis. Used frequently also to make energy grids, by making the axis, and then using ``axis.center`` or ``axis.edges``. Parameters ---------- emin, emax : `~astropy.units.Quantity`, float Energy range nbin : int Number of bins unit : `~astropy.units.Unit` Energy unit per_decade : bool Whether `nbin` is given per decade. energy_true : bool Whether energy is true energy Returns ------- axis : `MapAxis` Axis with name "energy" and interp "log". """ emin = u.Quantity(emin, unit) emax = u.Quantity(emax, unit) if unit is None: unit = emax.unit emin = emin.to(unit) if per_decade: nbin = np.ceil(np.log10(emax / emin).value * nbin) if name is None: name = "energy" return cls.from_bounds( emin.value, emax.value, nbin=nbin, unit=unit, interp="log", name=name )
[docs] @classmethod def from_nodes(cls, nodes, **kwargs): """Generate an axis object from a sequence of nodes (bin centers). This will create a sequence of bins with edges half-way between the node values. This method should be used to construct an axis where the bin center should lie at a specific value (e.g. a map of a continuous function). Parameters ---------- nodes : `~numpy.ndarray` Axis nodes (bin center). interp : {'lin', 'log', 'sqrt'} Interpolation method used to transform between axis and pixel coordinates. Default: 'lin'. """ if len(nodes) < 1: raise ValueError("Nodes array must have at least one element.") return cls(nodes, node_type="center", **kwargs)
[docs] @classmethod def from_edges(cls, edges, **kwargs): """Generate an axis object from a sequence of bin edges. This method should be used to construct an axis where the bin edges should lie at specific values (e.g. a histogram). The number of bins will be one less than the number of edges. Parameters ---------- edges : `~numpy.ndarray` Axis bin edges. interp : {'lin', 'log', 'sqrt'} Interpolation method used to transform between axis and pixel coordinates. Default: 'lin'. """ if len(edges) < 2: raise ValueError("Edges array must have at least two elements.") return cls(edges, node_type="edges", **kwargs)
[docs] def pix_to_coord(self, pix): """Transform from pixel to axis coordinates. Parameters ---------- pix : `~numpy.ndarray` Array of pixel coordinate values. Returns ------- coord : `~numpy.ndarray` Array of axis coordinate values. """ pix = pix - self._pix_offset values = pix_to_coord(self._nodes, pix, interp=self._interp) return u.Quantity(values, unit=self.unit, copy=False)
[docs] def coord_to_pix(self, coord): """Transform from axis to pixel coordinates. Parameters ---------- coord : `~numpy.ndarray` Array of axis coordinate values. Returns ------- pix : `~numpy.ndarray` Array of pixel coordinate values. """ coord = u.Quantity(coord, self.unit, copy=False).value pix = coord_to_pix(self._nodes, coord, interp=self._interp) return np.array(pix + self._pix_offset, ndmin=1)
[docs] def coord_to_idx(self, coord, clip=False): """Transform from axis coordinate to bin index. Parameters ---------- coord : `~numpy.ndarray` Array of axis coordinate values. clip : bool Choose whether to clip the index to the valid range of the axis. If false then indices for values outside the axis range will be set -1. Returns ------- idx : `~numpy.ndarray` Array of bin indices. """ coord = u.Quantity(coord, self.unit, copy=False).value return coord_to_idx(self.edges.value, coord, clip)
[docs] def slice(self, idx): """Create a new axis object by extracting a slice from this axis. Parameters ---------- idx : slice Slice object selecting a subselection of the axis. Returns ------- axis : `~MapAxis` Sliced axis object. """ center = self.center[idx].value idx = self.coord_to_idx(center) # For edge nodes we need to keep N+1 nodes if self._node_type == "edges": idx = tuple(list(idx) + [1 + idx[-1]]) nodes = self._nodes[(idx,)] return MapAxis( nodes, interp=self._interp, name=self._name, node_type=self._node_type, unit=self._unit, )
[docs] def squash(self): """Create a new axis object by squashing the axis into one bin. Returns ------- axis : `~MapAxis` Sliced axis object. """ # TODO: Decide on handling node_type=center # See https://github.com/gammapy/gammapy/issues/1952 return MapAxis.from_bounds( lo_bnd=self.edges[0].value, hi_bnd=self.edges[-1].value, nbin=1, interp=self._interp, name=self._name, unit=self._unit, )
def __repr__(self): str_ = self.__class__.__name__ str_ += "\n\n" fmt = "\t{:<10s} : {:<10s}\n" str_ += fmt.format("name", self.name) str_ += fmt.format("unit", "{!r}".format(str(self.unit))) str_ += fmt.format("nbins", str(self.nbin)) str_ += fmt.format("node type", self.node_type) vals = self.edges if self.node_type == "edges" else self.center str_ += fmt.format(f"{self.node_type} min", "{:.1e}".format(vals.min())) str_ += fmt.format(f"{self.node_type} max", "{:.1e}".format(vals.max())) str_ += fmt.format("interp", self._interp) return str_ def _init_copy(self, **kwargs): """Init map axis instance by copying missing init arguments from self. """ argnames = inspect.getfullargspec(self.__init__).args argnames.remove("self") for arg in argnames: value = getattr(self, "_" + arg) kwargs.setdefault(arg, copy.deepcopy(value)) return self.__class__(**kwargs)
[docs] def copy(self, **kwargs): """Copy `MapAxis` instance and overwrite given attributes. Parameters ---------- **kwargs : dict Keyword arguments to overwrite in the map axis constructor. Returns ------- copy : `MapAxis` Copied map axis. """ return self._init_copy(**kwargs)
[docs] def group_table(self, edges): """Compute bin groups table for the map axis, given coarser bin edges. Parameters ---------- edges : `~astropy.units.Quantity` Group bin edges. Returns ------- groups : `~astropy.table.Table` Map axis group table. """ # TODO: try to simplify this code if not self.node_type == "edges": raise ValueError("Only edge based map axis can be grouped") edges_pix = self.coord_to_pix(edges) edges_pix = np.clip(edges_pix, -0.5, self.nbin - 0.5) edges_idx = np.round(edges_pix + 0.5) - 0.5 edges_idx = np.unique(edges_idx) edges_ref = self.pix_to_coord(edges_idx) groups = QTable() groups[f"{self.name}_min"] = edges_ref[:-1] groups[f"{self.name}_max"] = edges_ref[1:] groups["idx_min"] = (edges_idx[:-1] + 0.5).astype(int) groups["idx_max"] = (edges_idx[1:] - 0.5).astype(int) if len(groups) == 0: raise ValueError("No overlap between reference and target edges.") groups["bin_type"] = "normal " edge_idx_start, edge_ref_start = edges_idx[0], edges_ref[0] if edge_idx_start > 0: underflow = { "bin_type": "underflow", "idx_min": 0, "idx_max": edge_idx_start, f"{self.name}_min": self.pix_to_coord(-0.5), f"{self.name}_max": edge_ref_start, } groups.insert_row(0, vals=underflow) edge_idx_end, edge_ref_end = edges_idx[-1], edges_ref[-1] if edge_idx_end < (self.nbin - 0.5): overflow = { "bin_type": "overflow", "idx_min": edge_idx_end + 1, "idx_max": self.nbin - 1, f"{self.name}_min": edge_ref_end, f"{self.name}_max": self.pix_to_coord(self.nbin - 0.5), } groups.add_row(vals=overflow) group_idx = Column(np.arange(len(groups))) groups.add_column(group_idx, name="group_idx", index=0) return groups
def _up_down_sample(self, nbin): if self.node_type == "edges": nodes = self.edges else: nodes = self.center lo_bnd, hi_bnd = nodes.min(), nodes.max() return self.from_bounds( lo_bnd=lo_bnd.value, hi_bnd=hi_bnd.value, nbin=nbin, interp=self.interp, node_type=self.node_type, unit=self.unit, name=self.name, )
[docs] def upsample(self, factor): """Upsample map axis by a given factor. Parameters ---------- factor : int Upsampling factor. Returns ------- axis : `MapAxis` Usampled map axis. """ nbin = self.nbin * factor return self._up_down_sample(nbin)
[docs] def downsample(self, factor): """Downsample map axis by a given factor. Parameters ---------- factor : int Downsampling factor. Returns ------- axis : `MapAxis` Downsampled map axis. """ nbin = int(self.nbin / factor) return self._up_down_sample(nbin)
[docs]class MapCoord: """Represents a sequence of n-dimensional map coordinates. Contains coordinates for 2 spatial dimensions and an arbitrary number of additional non-spatial dimensions. For further information see :ref:`mapcoord`. Parameters ---------- data : `dict` of `~numpy.ndarray` Dictionary of coordinate arrays. frame : {"icrs", "galactic", None} Spatial coordinate system. If None then the coordinate system will be set to the native coordinate system of the geometry. match_by_name : bool Match coordinates to axes by name? If false coordinates will be matched by index. """ def __init__(self, data, frame=None, match_by_name=True): if "lon" not in data or "lat" not in data: raise ValueError("data dictionary must contain axes named 'lon' and 'lat'.") data = {k: np.atleast_1d(np.asanyarray(v)) for k, v in data.items()} vals = np.broadcast_arrays(*data.values(), subok=True) self._data = dict(zip(data.keys(), vals)) self._frame = frame self._match_by_name = match_by_name def __getitem__(self, key): if isinstance(key, str): return self._data[key] else: return list(self._data.values())[key] def __iter__(self): return iter(self._data.values()) @property def ndim(self): """Number of dimensions.""" return len(self._data) @property def shape(self): """Coordinate array shape.""" return self[0].shape @property def size(self): return self[0].size @property def lon(self): """Longitude coordinate in degrees.""" return self._data["lon"] @property def lat(self): """Latitude coordinate in degrees.""" return self._data["lat"] @property def theta(self): """Theta co-latitude angle in radians.""" theta = u.Quantity(self.lat, unit="deg", copy=False).to_value("rad") return np.pi / 2.0 - theta @property def phi(self): """Phi longitude angle in radians.""" phi = u.Quantity(self.lon, unit="deg", copy=False).to_value("rad") return phi @property def frame(self): """Coordinate system (str).""" return self._frame @property def match_by_name(self): """Boolean flag: axis lookup by name (True) or index (False).""" return self._match_by_name @property def skycoord(self): return SkyCoord(self.lon, self.lat, unit="deg", frame=self.frame) @classmethod def _from_lonlat(cls, coords, frame=None): """Create a `~MapCoord` from a tuple of coordinate vectors. The first two elements of the tuple should be longitude and latitude in degrees. Parameters ---------- coords : tuple Tuple of `~numpy.ndarray`. Returns ------- coord : `~MapCoord` A coordinates object. """ if isinstance(coords, (list, tuple)): coords_dict = {"lon": coords[0], "lat": coords[1]} for i, c in enumerate(coords[2:]): coords_dict[f"axis{i}"] = c else: raise ValueError("Unrecognized input type.") return cls(coords_dict, frame=frame, match_by_name=False) @classmethod def _from_tuple(cls, coords, frame=None): """Create from tuple of coordinate vectors.""" if isinstance(coords[0], (list, np.ndarray)) or np.isscalar(coords[0]): return cls._from_lonlat(coords, frame=frame) elif isinstance(coords[0], SkyCoord): lon, lat, frame = skycoord_to_lonlat(coords[0], frame=frame) coords = (lon, lat) + coords[1:] return cls._from_lonlat(coords, frame=frame) else: raise TypeError(f"Type not supported: {type(coords)!r}") @classmethod def _from_dict(cls, coords, frame=None): """Create from a dictionary of coordinate vectors.""" if "lon" in coords and "lat" in coords: return cls(coords, frame=frame) elif "skycoord" in coords: lon, lat, frame = skycoord_to_lonlat(coords["skycoord"], frame=frame) coords_dict = {"lon": lon, "lat": lat} for k, v in coords.items(): if k == "skycoord": continue coords_dict[k] = v return cls(coords_dict, frame=frame) else: raise ValueError("coords dict must contain 'lon'/'lat' or 'skycoord'.")
[docs] @classmethod def create(cls, data, frame=None): """Create a new `~MapCoord` object. This method can be used to create either unnamed (with tuple input) or named (via dict input) axes. Parameters ---------- data : tuple, dict, `MapCoord` or `~astropy.coordinates.SkyCoord` Object containing coordinate arrays. frame : {"icrs", "galactic", None}, optional Set the coordinate system for longitude and latitude. If None longitude and latitude will be assumed to be in the coordinate system native to a given map geometry. Examples -------- >>> from astropy.coordinates import SkyCoord >>> from gammapy.maps import MapCoord >>> lon, lat = [1, 2], [2, 3] >>> skycoord = SkyCoord(lon, lat, unit='deg') >>> energy = [1000] >>> c = MapCoord.create((lon,lat)) >>> c = MapCoord.create((skycoord,)) >>> c = MapCoord.create((lon,lat,energy)) >>> c = MapCoord.create(dict(lon=lon,lat=lat)) >>> c = MapCoord.create(dict(lon=lon,lat=lat,energy=energy)) >>> c = MapCoord.create(dict(skycoord=skycoord,energy=energy)) """ if isinstance(data, cls): if data.frame is None or frame == data.frame: return data else: return data.to_frame(frame) elif isinstance(data, dict): return cls._from_dict(data, frame=frame) elif isinstance(data, (list, tuple)): return cls._from_tuple(data, frame=frame) elif isinstance(data, SkyCoord): return cls._from_tuple((data,), frame=frame) else: raise TypeError(f"Unsupported input type: {type(data)!r}")
[docs] def to_frame(self, frame): """Convert to a different coordinate frame. Parameters ---------- frame : {"icrs", "galactic"} Coordinate system, either Galactic ("galactic") or Equatorial ("icrs"). Returns ------- coords : `~MapCoord` A coordinates object. """ if frame == self.frame: return copy.deepcopy(self) else: lon, lat, frame = skycoord_to_lonlat(self.skycoord, frame=frame) data = copy.deepcopy(self._data) if isinstance(self.lon, u.Quantity): lon = u.Quantity(lon, unit="deg", copy=False) if isinstance(self.lon, u.Quantity): lat = u.Quantity(lat, unit="deg", copy=False) data["lon"] = lon data["lat"] = lat return self.__class__(data, frame, self._match_by_name)
[docs] def apply_mask(self, mask): """Return a masked copy of this coordinate object. Parameters ---------- mask : `~numpy.ndarray` Boolean mask. Returns ------- coords : `~MapCoord` A coordinates object. """ data = {k: v[mask] for k, v in self._data.items()} return self.__class__(data, self.frame, self._match_by_name)
[docs] def copy(self): """Copy `MapCoord` object.""" return copy.deepcopy(self)
def __repr__(self): return ( f"{self.__class__.__name__}\n\n" f"\taxes : {list(self._data.keys())}\n" f"\tshape : {self.shape[::-1]}\n" f"\tndim : {self.ndim}\n" f"\tframe : {self.frame}\n" )
[docs]class Geom(abc.ABC): """Map geometry base class. See also: `~gammapy.maps.WcsGeom` and `~gammapy.maps.HpxGeom` """ @property @abc.abstractmethod def data_shape(self): """Shape of the Numpy data array matching this geometry.""" pass @property @abc.abstractmethod def is_allsky(self): pass @property @abc.abstractmethod def center_coord(self): pass @property @abc.abstractmethod def center_pix(self): pass @property @abc.abstractmethod def center_skydir(self): pass @property def axes_names(self): return [ax.name for ax in self.axes]
[docs] @classmethod def from_hdulist(cls, hdulist, hdu=None, hdu_bands=None): """Load a geometry object from a FITS HDUList. Parameters ---------- hdulist : `~astropy.io.fits.HDUList` HDU list containing HDUs for map data and bands. hdu : str Name or index of the HDU with the map data. hdu_bands : str Name or index of the HDU with the BANDS table. If not defined this will be inferred from the FITS header of the map HDU. Returns ------- geom : `~Geom` Geometry object. """ if hdu is None: hdu = find_hdu(hdulist) else: hdu = hdulist[hdu] if hdu_bands is None: hdu_bands = find_bands_hdu(hdulist, hdu) if hdu_bands is not None: hdu_bands = hdulist[hdu_bands] return cls.from_header(hdu.header, hdu_bands)
[docs] def make_bands_hdu(self, hdu=None, hdu_skymap=None, conv=None): header = fits.Header() self._fill_header_from_axes(header) axis_names = None # FIXME: Check whether convention is compatible with # dimensionality of geometry if conv == "fgst-ccube": hdu = "EBOUNDS" axis_names = ["energy"] elif conv == "fgst-template": hdu = "ENERGIES" axis_names = ["energy"] elif conv == "gadf" and hdu is None: if hdu_skymap: hdu = f"{hdu_skymap}_BANDS" else: hdu = "BANDS" # else: # raise ValueError('Unknown conv: {}'.format(conv)) cols = make_axes_cols(self.axes, axis_names) cols += self._make_bands_cols() return fits.BinTableHDU.from_columns(cols, header, name=hdu)
@abc.abstractmethod def _make_bands_cols(self): pass
[docs] @abc.abstractmethod def get_idx(self, idx=None, local=False, flat=False): """Get tuple of pixel indices for this geometry. Returns all pixels in the geometry by default. Pixel indices for a single image plane can be accessed by setting ``idx`` to the index tuple of a plane. Parameters ---------- idx : tuple, optional A tuple of indices with one index for each non-spatial dimension. If defined only pixels for the image plane with this index will be returned. If none then all pixels will be returned. local : bool Flag to return local or global pixel indices. Local indices run from 0 to the number of pixels in a given image plane. flat : bool, optional Return a flattened array containing only indices for pixels contained in the geometry. Returns ------- idx : tuple Tuple of pixel index vectors with one vector for each dimension. """ pass
[docs] @abc.abstractmethod def get_coord(self, idx=None, flat=False): """Get the coordinate array for this geometry. Returns a coordinate array with the same shape as the data array. Pixels outside the geometry are set to NaN. Coordinates for a single image plane can be accessed by setting ``idx`` to the index tuple of a plane. Parameters ---------- idx : tuple, optional A tuple of indices with one index for each non-spatial dimension. If defined only coordinates for the image plane with this index will be returned. If none then coordinates for all pixels will be returned. flat : bool, optional Return a flattened array containing only coordinates for pixels contained in the geometry. Returns ------- coords : tuple Tuple of coordinate vectors with one vector for each dimension. """ pass
[docs] @abc.abstractmethod def coord_to_pix(self, coords): """Convert map coordinates to pixel coordinates. Parameters ---------- coords : tuple Coordinate values in each dimension of the map. This can either be a tuple of numpy arrays or a MapCoord object. If passed as a tuple then the ordering should be (longitude, latitude, c_0, ..., c_N) where c_i is the coordinate vector for axis i. Returns ------- pix : tuple Tuple of pixel coordinates in image and band dimensions. """ pass
[docs] def coord_to_idx(self, coords, clip=False): """Convert map coordinates to pixel indices. Parameters ---------- coords : tuple or `~MapCoord` Coordinate values in each dimension of the map. This can either be a tuple of numpy arrays or a MapCoord object. If passed as a tuple then the ordering should be (longitude, latitude, c_0, ..., c_N) where c_i is the coordinate vector for axis i. clip : bool Choose whether to clip indices to the valid range of the geometry. If false then indices for coordinates outside the geometry range will be set -1. Returns ------- pix : tuple Tuple of pixel indices in image and band dimensions. Elements set to -1 correspond to coordinates outside the map. """ pix = self.coord_to_pix(coords) return self.pix_to_idx(pix, clip=clip)
[docs] @abc.abstractmethod def pix_to_coord(self, pix): """Convert pixel coordinates to map coordinates. Parameters ---------- pix : tuple Tuple of pixel coordinates. Returns ------- coords : tuple Tuple of map coordinates. """ pass
[docs] @abc.abstractmethod def pix_to_idx(self, pix, clip=False): """Convert pixel coordinates to pixel indices. Returns -1 for pixel coordinates that lie outside of the map. Parameters ---------- pix : tuple Tuple of pixel coordinates. clip : bool Choose whether to clip indices to the valid range of the geometry. If false then indices for coordinates outside the geometry range will be set -1. Returns ------- idx : tuple Tuple of pixel indices. """ pass
[docs] @abc.abstractmethod def contains(self, coords): """Check if a given map coordinate is contained in the geometry. Parameters ---------- coords : tuple or `~gammapy.maps.MapCoord` Tuple of map coordinates. Returns ------- containment : `~numpy.ndarray` Bool array. """ pass
[docs] def contains_pix(self, pix): """Check if a given pixel coordinate is contained in the geometry. Parameters ---------- pix : tuple Tuple of pixel coordinates. Returns ------- containment : `~numpy.ndarray` Bool array. """ idx = self.pix_to_idx(pix) return np.all(np.stack([t != INVALID_INDEX.int for t in idx]), axis=0)
[docs] def slice_by_idx(self, slices): """Create a new geometry by slicing the non-spatial axes. Parameters ---------- slices : dict Dict of axes names and integers or `slice` object pairs. Contains one element for each non-spatial dimension. For integer indexing the correspoding axes is dropped from the map. Axes not specified in the dict are kept unchanged. Returns ------- geom : `~Geom` Sliced geometry. """ axes = [] for ax in self.axes: ax_slice = slices.get(ax.name, slice(None)) if isinstance(ax_slice, slice): ax_sliced = ax.slice(ax_slice) axes.append(ax_sliced) # in the case where isinstance(ax_slice, int) the axes is dropped return self._init_copy(axes=axes)
[docs] @abc.abstractmethod def to_image(self): """Create 2D image geometry (drop non-spatial dimensions). Returns ------- geom : `~Geom` Image geometry. """ pass
[docs] @abc.abstractmethod def to_cube(self, axes): """Append non-spatial axes to create a higher-dimensional geometry. This will result in a new geometry with N+M dimensions where N is the number of current dimensions and M is the number of axes in the list. Parameters ---------- axes : list Axes that will be appended to this geometry. Returns ------- geom : `~Geom` Map geometry. """ pass
[docs] def coord_to_tuple(self, coord): """Generate a coordinate tuple compatible with this geometry. Parameters ---------- coord : `~MapCoord` """ if self.ndim != coord.ndim: raise ValueError("ndim mismatch") if not coord.match_by_name: return tuple(coord._data.values()) coord_tuple = [coord.lon, coord.lat] for ax in self.axes: coord_tuple += [coord[ax.name]] return coord_tuple
[docs] @abc.abstractmethod def pad(self, pad_width): """ Pad the geometry at the edges. Parameters ---------- pad_width : {sequence, array_like, int} Number of values padded to the edges of each axis. Returns ------- geom : `~Geom` Padded geometry. """ pass
[docs] @abc.abstractmethod def crop(self, crop_width): """ Crop the geometry at the edges. Parameters ---------- crop_width : {sequence, array_like, int} Number of values cropped from the edges of each axis. Returns ------- geom : `~Geom` Cropped geometry. """ pass
[docs] @abc.abstractmethod def downsample(self, factor, axis): """Downsample the spatial dimension of the geometry by a given factor. Parameters ---------- factor : int Downsampling factor. axis : str Axis to downsample. Returns ------- geom : `~Geom` Downsampled geometry. """ pass
[docs] @abc.abstractmethod def upsample(self, factor, axis): """Upsample the spatial dimension of the geometry by a given factor. Parameters ---------- factor : int Upsampling factor. axis : str Axis to upsample. Returns ------- geom : `~Geom` Upsampled geometry. """ pass
[docs] @abc.abstractmethod def solid_angle(self): """Solid angle (`~astropy.units.Quantity` in ``sr``).""" pass
def _fill_header_from_axes(self, header): for idx, ax in enumerate(self.axes, start=1): key = "AXCOLS%i" % idx name = ax.name.upper() if ax.name == "energy" and ax.node_type == "edges": header[key] = "E_MIN,E_MAX" elif ax.name == "energy" and ax.node_type == "center": header[key] = "ENERGY" elif ax.node_type == "edges": header[key] = f"{name}_MIN,{name}_MAX" elif ax.node_type == "center": header[key] = name else: raise ValueError(f"Invalid node type {ax.node_type!r}") key_interp = "INTERP%i" % idx header[key_interp] = ax._interp @property def is_image(self): """Whether the geom is equivalent to an image without extra dimensions.""" if self.axes is None: return True return len(self.axes) == 0
[docs] def get_axis_by_name(self, name): """Get an axis by name (case in-sensitive). Parameters ---------- name : str Name of the requested axis Returns ------- axis : `~gammapy.maps.MapAxis` Axis """ axes = {axis.name.upper(): axis for axis in self.axes} return axes[name.upper()]
[docs] def get_axis_index_by_name(self, name): """Get an axis index by name (case in-sensitive). Parameters ---------- name : str Axis name Returns ------- index : int Axis index """ names = [axis.name.upper() for axis in self.axes] return names.index(name.upper())
def _init_copy(self, **kwargs): """Init map geom instance by copying missing init arguments from self. """ argnames = inspect.getfullargspec(self.__init__).args argnames.remove("self") for arg in argnames: value = getattr(self, "_" + arg) kwargs.setdefault(arg, copy.deepcopy(value)) return self.__class__(**kwargs)
[docs] def copy(self, **kwargs): """Copy and overwrite given attributes. Parameters ---------- **kwargs : dict Keyword arguments to overwrite in the map geometry constructor. Returns ------- copy : `Geom` Copied map geometry. """ return self._init_copy(**kwargs)
[docs] def energy_mask(self, emin=None, emax=None): """Create a mask for a given energy range. The energy bin must be fully contained to be included in the mask. Parameters ---------- emin, emax : `~astropy.units.Quantity` Energy range Returns ------- mask : `~numpy.ndarray` Energy mask """ # get energy axes and values energy_axis = self.get_axis_by_name("energy") edges = energy_axis.edges.reshape((-1, 1, 1)) # set default values emin = emin if emin is not None else edges[0] emax = emax if emax is not None else edges[-1] mask = (edges[:-1] >= emin) & (edges[1:] <= emax) return np.broadcast_to(mask, shape=self.data_shape)