PSFMap¶
-
class
gammapy.irf.PSFMap(psf_map, exposure_map=None)[source]¶ Bases:
gammapy.irf.irf_map.IRFMapClass containing the Map of PSFs and allowing to interact with it.
- Parameters
Examples
import numpy as np from astropy import units as u from astropy.coordinates import SkyCoord from gammapy.maps import Map, WcsGeom, MapAxis from gammapy.irf import EnergyDependentMultiGaussPSF, EffectiveAreaTable2D from gammapy.cube import make_psf_map, PSFMap, make_map_exposure_true_energy # Define energy axis. Note that the name is fixed. energy_axis = MapAxis.from_edges(np.logspace(-1., 1., 4), unit='TeV', name='energy') # Define rad axis. Again note the axis name rads = np.linspace(0., 0.5, 100) * u.deg rad_axis = MapAxis.from_edges(rads, unit='deg', name='theta') # Define parameters pointing = SkyCoord(0., 0., unit='deg') max_offset = 4 * u.deg # Create WcsGeom geom = WcsGeom.create(binsz=0.25*u.deg, width=10*u.deg, skydir=pointing, axes=[rad_axis, energy_axis]) # Extract EnergyDependentTablePSF from CTA 1DC IRF filename = '$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits' psf = EnergyDependentMultiGaussPSF.read(filename, hdu='POINT SPREAD FUNCTION') psf3d = psf.to_psf3d(rads) aeff2d = EffectiveAreaTable2D.read(filename, hdu='EFFECTIVE AREA') # Create the exposure map exposure_geom = geom.to_image().to_cube([energy_axis]) exposure_map = make_map_exposure_true_energy(pointing, "1 h", aeff2d, exposure_geom) # create the PSFMap for the specified pointing psf_map = make_psf_map(psf3d, pointing, geom, max_offset, exposure_map) # Get an EnergyDependentTablePSF at any position in the image psf_table = psf_map.get_energy_dependent_table_psf(SkyCoord(2., 2.5, unit='deg')) # Write map to disk psf_map.write('psf_map.fits')
Attributes Summary
Methods Summary
containment_radius_map(self, energy[, fraction])Containment radius map.
copy(self)Copy IRF map
cutout(self, position, width[, mode])Cutout IRF map.
from_energy_dependent_table_psf(table_psf)Create PSF map from table PSF object.
from_geom(geom)Create psf map from geom.
from_hdulist(hdulist[, hdu, hdu_bands, …])Create from
HDUList.get_energy_dependent_table_psf(self, position)Get energy-dependent PSF at a given position.
get_psf_kernel(self, position, geom[, …])Returns a PSF kernel at the given position.
read(filename)Read an IRF_map from file and create corresponding object
sample_coord(self, map_coord[, random_state])Apply PSF corrections on the coordinates of a set of simulated events.
stack(self, other[, weights])Stack IRF map with another one in place.
to_hdulist(self)Convert to
HDUList.to_image(self[, spectrum, keepdims])Reduce to a 2-D map after weighing with the associated exposure and a spectrum
write(self, filename[, overwrite])Write IRF map to fits
Attributes Documentation
-
psf_map¶
Methods Documentation
-
copy(self)¶ Copy IRF map
-
cutout(self, position, width, mode='trim')¶ Cutout IRF map.
- Parameters
- Returns
- cutout
IRFMap Cutout IRF map.
- cutout
-
classmethod
from_energy_dependent_table_psf(table_psf)[source]¶ Create PSF map from table PSF object.
Helper function to create an allsky PSF map from table PSF, which does not depend on position.
- Parameters
- table_psf
EnergyDependentTablePSF Table PSF
- table_psf
- Returns
- psf_map
PSFMap Point spread function map.
- psf_map
-
classmethod
from_geom(geom)[source]¶ Create psf map from geom.
- Parameters
- geom
Geom PSF map geometry.
- geom
- Returns
- psf_map
PSFMap Point spread function map.
- psf_map
-
classmethod
from_hdulist(hdulist, hdu=None, hdu_bands=None, exposure_hdu=None, exposure_hdu_bands=None)¶ Create from
HDUList.- Parameters
- hdulist
HDUList HDU list.
- hdustr
Name or index of the HDU with the IRF map.
- hdu_bandsstr
Name or index of the HDU with the IRF map BANDS table.
- exposure_hdustr
Name or index of the HDU with the exposure map data.
- exposure_hdu_bandsstr
Name or index of the HDU with the exposure map BANDS table.
- hdulist
- Returns
- irf_map
IRFMap IRF map.
- irf_map
-
get_energy_dependent_table_psf(self, position)[source]¶ Get energy-dependent PSF at a given position.
- Parameters
- position
SkyCoord the target position. Should be a single coordinates
- position
- Returns
- psf_table
EnergyDependentTablePSF the table PSF
- psf_table
-
get_psf_kernel(self, position, geom, max_radius=None, factor=4)[source]¶ Returns a PSF kernel at the given position.
The PSF is returned in the form a WcsNDMap defined by the input Geom.
-
classmethod
read(filename)¶ Read an IRF_map from file and create corresponding object
-
sample_coord(self, map_coord, random_state=0)[source]¶ Apply PSF corrections on the coordinates of a set of simulated events.
- Parameters
- map_coord
MapCoordobject. Sequence of coordinates and energies of sampled events.
- random_state{int, ‘random-seed’, ‘global-rng’,
RandomState} Defines random number generator initialisation. Passed to
get_random_state.
- map_coord
- Returns
- corr_coord
MapCoordobject. Sequence of PSF-corrected coordinates of the input map_coord map.
- corr_coord
-
stack(self, other, weights=None)¶ Stack IRF map with another one in place.
- Parameters
- other
IRFMap Energy dispersion map to be stacked with this one.
- weights
Map Map with stacking weights.
- other
-
to_image(self, spectrum=None, keepdims=True)[source]¶ Reduce to a 2-D map after weighing with the associated exposure and a spectrum
- Parameters
- spectrum
SpectralModel, optional Spectral model to compute the weights. Default is power-law with spectral index of 2.
- keepdimsbool, optional
If True, the energy axis is kept with one bin. If False, the axis is removed
- spectrum
- Returns
-
write(self, filename, overwrite=False, **kwargs)¶ Write IRF map to fits