ConstantTemporalModel¶
-
class
gammapy.modeling.models.
ConstantTemporalModel
(**kwargs)[source]¶ Bases:
gammapy.modeling.models.TemporalModel
Constant temporal model.
Attributes Summary
Parameters (
Parameters
)Methods Summary
__call__
(self, time)Evaluate model
copy
(self)A deep copy.
create
(tag, \*args, \*\*kwargs)Create a model instance.
evaluate
(time)Evaluate at given times.
from_dict
(data)from_parameters
(parameters, \*\*kwargs)Create model from parameter list
integral
(self, t_min, t_max)Evaluate the integrated flux within the given time intervals
sample_time
(n_events, t_min, t_max[, …])Sample arrival times of events.
time_sum
(t_min, t_max)Total time between t_min and t_max
to_dict
(self)Create dict for YAML serialisation
Attributes Documentation
-
covariance
¶
-
default_parameters
= <gammapy.modeling.parameter.Parameters object>¶
-
parameters
¶ Parameters (
Parameters
)
-
tag
= 'ConstantTemporalModel'¶
Methods Documentation
-
copy
(self)¶ A deep copy.
-
static
create
(tag, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling.models import Model >>> spectral_model = Model.create("PowerLaw2SpectralModel", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
classmethod
from_dict
(data)¶
-
classmethod
from_parameters
(parameters, **kwargs)¶ Create model from parameter list
- Parameters
- parameters
Parameters
Parameters for init
- parameters
- Returns
- model
Model
Model instance
- model
-
integral
(self, t_min, t_max)[source]¶ Evaluate the integrated flux within the given time intervals
- Parameters
- t_min: `~astropy.time.Time`
Start times of observation
- t_max: `~astropy.time.Time`
Stop times of observation
- Returns
- norm
Quantity
Integrated flux norm on the given time intervals
- norm
-
static
sample_time
(n_events, t_min, t_max, random_state=0)[source]¶ Sample arrival times of events.
- Parameters
- n_eventsint
Number of events to sample.
- t_min
Time
Start time of the sampling.
- t_max
Time
Stop time of the sampling.
- random_state{int, ‘random-seed’, ‘global-rng’,
RandomState
} Defines random number generator initialisation. Passed to
get_random_state
.
- Returns
- time
Quantity
Array with times of the sampled events.
- time
-
static
time_sum
(t_min, t_max)¶ Total time between t_min and t_max
- Parameters
- t_min, t_max: `~astropy.time.Time`
Lower and upper bound of integration range
- Returns
- time_sum
TimeDelta
Summed time in the intervals.
- time_sum
-
to_dict
(self)¶ Create dict for YAML serialisation
-