This is a fixed-text formatted version of a Jupyter notebook.
- Try online
- You can contribute with your own notebooks in this GitHub repository.
- Source files: source_population_model.ipynb | source_population_model.py
Astrophysical source population modeling with Gammapy¶
Introduction¶
The gammapy.astro.population package contains some simple Galactic source population models.
Here we provide some Python code to compute observable parameter distributions for Galactic gamma-ray source populations.
- Observables: Flux, GLON, GLAT
- Source classes: Pulsar (PSR), Supernova remnant (SNR), pulsar wind nebula (PWN)
References:
- Section 6.2 in the Fermi-LAT collaboration paper “The First Fermi-LAT Catalog of Sources Above 10 GeV”
- Axel Donath’s bachelor thesis “Modelling Galactic gamma-ray source populations”, specifically Chapter 4.
- Casanova & Dingus (2008), “Constraints on the TeV source population and its contribution to the galactic diffuse TeV emission”
- Strong (2007), “Source population synthesis and the Galactic diffuse gamma-ray emission”
Setup¶
In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
In [2]:
import numpy as np
import astropy.units as u
from gammapy.utils.random import sample_powerlaw
from gammapy.astro import population
Simulate positions¶
In [3]:
# Spatial distribution using Lorimer (2006) model
n_sources = int(1e5)
table = population.make_base_catalog_galactic(
n_sources=n_sources,
rad_dis="L06",
vel_dis="F06B",
max_age=1e6 * u.yr,
spiralarms=True,
)
Simulate luminosities¶
Several source population models, e.g. the 1FHL paper or Strong (2007), use power-law luminosity functions.
Here we implement the “reference model” from the 1FHL catalog paper section 6.2.
In [4]:
# Source luminosity (ph s^-1)
luminosity = sample_powerlaw(x_min=1e34, x_max=1e37, gamma=1.5, size=n_sources)
table["luminosity"] = luminosity
Compute observable parameters¶
In [5]:
table = population.add_observed_parameters(table)
table.info()
<Table length=100000>
name dtype unit description
---------- ------- --------- --------------------------------------
age float64 yr Age of the source
n_ISM float64 1 / cm3 Interstellar medium density
spiralarm str18 Which spiralarm?
x_birth float64 kpc Galactocentric x coordinate at birth
y_birth float64 kpc Galactocentric y coordinate at birth
z_birth float64 kpc Galactocentric z coordinate at birth
x float64 kpc Galactocentric x coordinate
y float64 kpc Galactocentric y coordinate
z float64 kpc Galactocentric z coordinate
vx float64 km / s Galactocentric velocity in x direction
vy float64 km / s Galactocentric velocity in y direction
vz float64 km / s Galactocentric velocity in z direction
v_abs float64 km / s Galactocentric velocity (absolute)
luminosity float64
distance float64 pc Distance observer to source center
GLON float64 deg Galactic longitude
GLAT float64 deg Galactic latitude
VGLON float64 deg / Myr Velocity in Galactic longitude
VGLAT float64 deg / Myr Velocity in Galactic latitude
RA float64 deg Right ascension
DEC float64 deg Declination
flux float64 1 / kpc2 Source flux
Check output¶
The simulation is done, you could save the simulated catalog to a file.
Here we just plot a few distributions to check if the results look OK.
In [6]:
plt.scatter(table["x"][:1000], table["y"][:1000]);
In [7]:
plt.hist(table["GLON"], bins=100);
In [8]:
plt.hist(table["GLAT"], bins=100, log=True);
In [9]:
plt.scatter(table["GLON"][:1000], table["GLAT"][:1000]);
In [10]:
plt.hist(table["distance"], bins=100, log=True);
In [11]:
plt.hist(np.log10(table["luminosity"]), bins=100, log=True);
In [12]:
plt.hist(np.log10(table["flux"]), bins=100, log=True);
In [13]:
# TODO: plot GLON, GLAT, FLUX distribution
What next?¶
TODO: summarise what was done here briefly.
TODO: add some pointers to other documentation.